
Common parallel applications (1)

All common applications exhibit a very high fraction of potentially
parallel operations (Amdahls Law: a very high, b very low)

Linear Algebra:

Operations with vectors and matrices

Systems of linear equations: A× x = b

Solvers may work in a direct way, e.g.
Gaussian-Elimination-Algorithm
Iterative solvers, e.g. Gauss-Seidel-Iteration, some very
efficient solvers for sparse coefficient matrices A
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Common parallel applications (2)

Solution of Differential Equations:

Equations that contain x , a function y(x) and deviations y ′(x).

Numerical solution using discrete differences instead of symbolic
differentiation

Iterative algorithm on values x

Algorithmical basis of many ’simulations’, in better words - numerical
solution of PDE-problems

Climate models and weather forecasting

Deformation, explosion simulations
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Common parallel applications (3)

Image processing:

Local operators, e.g. spreading of spectrum, smoothing can be
executed on different image parts in parallel

Object matching, e.g. detection of geometric forms

Finding of similar blocks in different images for detection of
object movements

(Soft) real-time multimedia
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Example: Partial Differential Equation (1)

Laplace Partial Differetial Equation (Laplace PDE):

�U(x , y) =
δ2

δx2
U(x , y) +

δ2

δy2
U(x , y) = 0

the values in U(x , y) express for instance
spacial distribution of electrical potential fields
temperature on a surface
level of ground water (e.g. for planning of building constructions)

Boundary values must be known for a solution of�U(x , y) = 0
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Example: Partial Differential Equation (2)

Discretization: express U(x , y) by a two-dimensional array of values
at discrete grid points

U(x , y) : U(i, j) with xi = i · h, yj = j · h

with h as the distance of neighbor points in x , and in y direction.

Discrete approximation of differential operator:
Common practice is a substitution for the first order deviation,
according to:

d
dx
f (x) = f ′(x) = limh→0

f (x + h)− f (x)
h

d
dx
f (x) = f ′(x) =

f (x + h)− f (x)
h

+O(h)

. . . we need a discretization of d2
dx2 f (x) = f ′′(x)
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Example: Partial Differential Equation (3)

Using Taylor series:

f (x + h) = f (x) + f ′(x)h +
1
2
f ′′(x)h2 +

1
6
f ′′′(x)h3 + . . .

f (x − h) = f (x)− f ′(x)h +
1
2
f ′′(x)h2 −

1
6
f ′′′(x)h3 + . . .

f (x + h) + f (x − h) = 2f (x) + f ′′(x)h2 +
1
12
f ′′′′(x)h4 +O(h6)

This can be written . . .

f ′′(x) =
f (x + h) + f (x − h)− 2f (x)

h2
+O(h2)

O(h2) = −
h2

12
f ′′′′(x) + . . .
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Example: Partial Differential Equation (4)

The differential operators can be written as differences:

U(i + 1, j) + U(i − 1, j) − 2U(i, j)
h2

+
U(i, j + 1) + U(i, j − 1)− 2U(i, j)

h2
= 0

Finally, an iterative formula for U(i,j) is obtained:

U(i, j) =
1
4

(U(i + 1, j) + U(i − 1, j) + U(i, j + 1) + U(i, j − 1))

iteration
x+1

iteration
x
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Example: Partial Differential Equation (5)

Can be transformed into a parallel iteration on separated areas for
each processor

iteration
x+1

iteration
x

Access to neighbor areas:

multiprocessor: via access to shared memory and
synchronization

multicomputer: by exchanging U(i,j) values that lay on the
boundaries of the locally processed area (using messages).
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