Common parallel applications (1)

All common applications exhibit a very high fraction of potentially parallel operations (Amdahls Law: a very high, b very low)

Linear Algebra:

■ Operations with vectors and matrices
■ Systems of linear equations: $A \times x=b$
■ Solvers may work in a direct way, e.g. Gaussian-Elimination-Algorithm
■ Iterative solvers, e.g. Gauss-Seidel-Iteration, some very efficient solvers for sparse coefficient matrices A

Common parallel applications (2)

Solution of Differential Equations:

- Equations that contain x, a function $y(x)$ and deviations $y^{\prime}(x)$.

■ Numerical solution using discrete differences instead of symbolic differentiation

■ Iterative algorithm on values x
Algorithmical basis of many 'simulations', in better words - numerical solution of PDE-problems

- Climate models and weather forecasting

■ Deformation, explosion simulations

Common parallel applications (3)

Image processing:

■ Local operators, e.g. spreading of spectrum, smoothing can be executed on different image parts in parallel

■ Object matching, e.g. detection of geometric forms
■ Finding of similar blocks in different images for detection of object movements

■ (Soft) real-time multimedia

Example: Partial Differential Equation (1)

Laplace Partial Differetial Equation (Laplace PDE):

$$
\triangle U(x, y)=\frac{\delta^{2}}{\delta x^{2}} U(x, y)+\frac{\delta^{2}}{\delta y^{2}} U(x, y)=0
$$

the values in $U(x, y)$ express for instance
■ spacial distribution of electrical potential fields

- temperature on a surface

■ level of ground water (e.g. for planning of building constructions)
Boundary values must be known for a solution of $\Delta U(x, y)=0$

Example: Partial Differential Equation (2)

Discretization: express $U(x, y)$ by a two-dimensional array of values at discrete grid points

$$
U(x, y): U(i, j) \quad \text { with } x_{i}=i \cdot h, \quad y_{j}=j \cdot h
$$

with h as the distance of neighbor points in x, and in y direction.
Discrete approximation of differential operator:
Common practice is a substitution for the first order deviation, according to:

$$
\begin{aligned}
\frac{d}{d x} f(x)=f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
\frac{d}{d x} f(x)=f^{\prime}(x) & =\frac{f(x+h)-f(x)}{h}+O(h)
\end{aligned}
$$

\ldots we need a discretization of $\frac{d^{2}}{d x^{2}} f(x)=f^{\prime \prime}(x)$

Example: Partial Differential Equation (3)

Using Taylor series:

$$
\begin{aligned}
f(x+h) & =f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}+\frac{1}{6} f^{\prime \prime \prime}(x) h^{3}+\ldots \\
f(x-h) & =f(x)-f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}-\frac{1}{6} f^{\prime \prime \prime}(x) h^{3}+\ldots \\
f(x+h)+f(x-h) & =2 f(x)+f^{\prime \prime}(x) h^{2}+\frac{1}{12} f^{\prime \prime \prime \prime}(x) h^{4}+O\left(h^{6}\right)
\end{aligned}
$$

This can be written ...

$$
\begin{gathered}
f^{\prime \prime}(x)=\frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}+O\left(h^{2}\right) \\
O\left(h^{2}\right)=-\frac{h^{2}}{12} f^{\prime \prime \prime \prime}(x)+\ldots
\end{gathered}
$$

Example: Partial Differential Equation (4)

The differential operators can be written as differences:

$$
\frac{U(i+1, j)+U(i-1, j)-2 U(i, j)}{h^{2}}+\frac{U(i, j+1)+U(i, j-1)-2 U(i, j)}{h^{2}}=0
$$

Finally, an iterative formula for $U(i, j)$ is obtained:

$$
U(i, j)=\frac{1}{4}(U(i+1, j)+U(i-1, j)+U(i, j+1)+U(i, j-1))
$$

Example: Partial Differential Equation (5)

Can be transformed into a parallel iteration on separated areas for each processor

Access to neighbor areas:
■ multiprocessor: via access to shared memory and synchronization
■ multicomputer: by exchanging $U(i, j)$ values that lay on the boundaries of the locally processed area (using messages).

