

ClassPad 300 SDK Tutorial

This document will demonstrate the process of developing, compiling and loading a simple add-
in application for the ClassPad 300. This document will present the basic classes and an
example approach to add-in development, but will not serve as a detailed reference. Please use
the included Reference help file as a more detailed reference.

 1

Table of Contents
CLASSPAD 300 SDK ENVIRONMENT ... 4

DEV-C++... 4
COMPILING AND LOADING AN ADD-IN.. 5

PROGRAMMING AN EXAMPLE ADD-IN APPLICATION.. 9

ARCHITECTURE.. 9

THE MAINFRAME... 9
MODULE WINDOWS ... 10
HELLO WORLD PROGRAM: SCRIBBLE_1.. 12

USER INTERFACE ... 13

THE MESSAGE FUNCTION .. 13
MENUS... 14
THE TOOLBAR.. 15
PEN OR KEYPAD INPUT .. 16
ADDITION OF UI ELEMENTS: SCRIBBLE_2... 17

MULTIPLE WINDOWS.. 19
ADDING A SECOND WINDOW ... 19
INVOKING APPLICATIONS .. 19
SCROLLING .. 20
MESSAGE BOXES ... 20
THE STATUS BAR... 21
ADDING A NEW WINDOW, DIALOG, AND SCROLLBARS: SCRIBBLE_3 21

INTERACTION BETWEEN WINDOWS... 26
DOCUMENTS AND WINDOWS ... 26
DOCUMENTS AND CHANGING DATA .. 27
LIVE UPDATING IN THE SCRIBBLE APPLICATION: SCRIBBLE_4.. 27

SAVING/RESTORING INFORMATION ... 30
UNDO/REDO .. 30
SAVING FILES .. 30
OPENING FILES .. 32
ADDING SAVE/LOAD AND UNDO TO THE EXAMPLE: SCRIBBLE_5 ... 32

MORE INFORMATION ... 39

ADVANCED TOPICS.. 39
UPLOAD ADD-IN TOOL .. 39
COMPILER AND LINKER ... 40
USING ASSEMBLY .. 41
BUILDING FROM THE COMMAND LINE... 42

 2

DEBUGGING IN DEV-C++... 44
DEBUGGING ON THE CLASSPAD .. 45

 3

ClassPad 300 SDK Environment
In this section we will take a brief look at the ClassPad 300 SDK Environment. This includes a
description of the SDK’s IDE as well as how to compile and load an add-in onto the ClassPad
300. We will assume that you have already installed the SDK into its default directory.

Dev-C++
The ClassPad 300 SDK uses Dev-C++ as its IDE. Dev-C++ is a full-featured Integrated
Development Environment (IDE) for the C/C++ programming language. The most recent
version available at the time of packaging is included in the SDK installer. However, for bug
fixes and new updates be sure to check the developer’s web site: http://www.bloodshed.net/. Be
aware that the ClassPad DLL has been compiled with MinGW 3.2. Even if you upgrade Dev-
C++ it is recommended that you continue to use the MinGW 3.2 compiler.

In general Dev-C++ uses the GNU compiler to create C/C++ programs. A ClassPad add-in,
however, is created using the HITACHI SH compiler. In order to seamlessly integrate
compilation of an add-in in Dev-C++ a wrapper tool was created to convert GCC syntax into SH
syntax. This tool, along with an update to Dev-C++’s ini and cfg file allow you to choose
compiler sets that will create an add-in using SHC and/or GCC.

Using Dev-C++
Before concerning ourselves with the details of the wrapper, let’s take a moment to go over the
basic steps in creating an add-in in Dev-C++.

Dev-C++ will help you organize your projects, and seamlessly compile then with the help of the
wrapper tools. Dev-C++ is also used as a front end to the GNU debugger, GDB.

After installing the SDK, you can start Dev-C++ from the Start Menu->Programs-> Dev-Cpp.

To explore the IDE, let’s open address.dev – the project file for the example Address Book add-
in. Click on File->Open Project or File… and browse to Documents\ClassPad 300
SDK\Examples\AddressBook\address.dev. We will use this as an example to explain the
basics of Dev-C++.

 4

http://www.bloodshed.net/

(Fig 1.1) – A typical Dev-C++ screenshot.

Figure 1.1 shows a typical view of Dev-C++. Window 1 lists all of the files in the present
project. Double click on any file to open it in the editor (window 2). Window 3 has several tabs
that you can click on for different information. Presently it shows errors after compiling this
project. Notice that the error selected in window 3 is highlighted in window 2. There is more
general information on how to use Dev-C++ on the creator’s website at
http://www.bloodshed.net/dev/index.html. From here on we will focus on using Dev-C++ for
creating an add-in.

Compiling and loading an add-in
Now that we have loaded the Address Book add-in, let’s walk through building and installing it
on the ClassPad.

Changing Compiler Sets
The wrapper tools that come with the SDK are capable of doing three different builds: ClassPad
Add-in only, Windows .EXE only or both ClassPad Add-in and Windows .EXE at the same
time. You can control which compiler is used when by selecting different compiler sets.

 5

http://www.bloodshed.net/dev/index.html

For this example we will use the compiler that builds both the Windows .EXE and the ClassPad
Add-in – the “CPSDK Add-in .CPA and Windows .EXE Compiler” setting. To ensure that this
is the current compiler, click on the Project menu and select Project Options (or press Alt+p).
When the Project Options dialog appears, click on the compiler tab.

Here you will see a drop down menu that has the three compiler sets described above plus the
Dev-C++ default compiler set (to develop in C/C++). Select “CPSDK Add-in .CPA and
Windows .EXE Compiler” from the list to build both a ClassPad add-in and a Windows
executable. Remember that the “Default Compiler” is the compiler that comes set up in Dev-
C++. You CANNOT use this compiler to build a ClassPad Add-in as it will call GCC (not SH).
Also note that this compiler cannot build a Window’s .EXE for the ClassPad because its
compiler and linker settings are not set correctly. When building an Add-in you will only use the
three compiler sets that the CPSDK installed.

Compiling
Once you have chosen the correct compiler set, building is as simple as clicking on the toolbar.
The build button will build any newly modified source files, link them and then build the
ClassPad add-in. The build all button will rebuild the entire project. The build and run
button will compile the program and then run it automatically. (Note: This only works when
using a compiler set that builds a Windows Executable.) If you switch compiler sets, make
sure to do a complete rebuild. Otherwise GCC may try to use some of SHC’s object files or
vice versa.

While the program builds, you can follow the compiler’s output in window 3. The compiler will
produce 2 output files in Documents\ClassPad 300 SDK\Examples\Address Book\outputdir
when it has finished. One of these is a Windows executable that can be run by clicking on the
run button in the toolbar. The second is a file called address.cpa. This is the compiled add

 6

in file that will be installed on the ClassPad. In general, the .cpa file and .exe file are created in
the “outputdir” subdirectory of your project’s directory.

Loading
To load the .cpa file we will use CASIO’s Add-in Installer. From Dev-C++, the add-in installer
is accessible from the Tools Menu.

Once you have started the Add-in Installer, plug your ClassPad into your computer using the
USB cable. If the ClassPad automatically starts the procedure to transfer via the manager, press
the cancel button.

To get the ClassPad ready to receive the add-in, choose communications from the launcher.
Next click on the Link Menu -> Install -> Add-in. Finally, you will be asked if you are sending
and Add-in App or a new language. Make sure Add-in App is selected and press OK. The
ClassPad is now ready to receive the add-in.

Fig.1.2 Fig.1.3 Fig. 1.4

Open Communications from the launcher (Fig1.2). Then click on the Link Menu->Install->Add-in (Fig1.3).
Finally, make sure that Add-in App is selected and click OK to begin the transfer (Fig1.4).

Go back to the Add-in Installer and click on the Add-in ->
Application… menu. This will bring up a file Browser.
Navigate to Documents\ClassPad 300
SDK\Examples\AddressBook\outputdir\address.cpa and
press O and the transmission of the add-in from your computer
to your ClassPad will begin. When the process has completed
you will get a message saying that the connection to the ClassPad is being closed.

You can now disconnect the ClassPad and exit the Add-in Installer.

On the ClassPad, go back to the launcher. At the top of the screen make sure that “All” appears
in the drop down next to the Menu title. Now scroll to the bottom of the screen and you will find
the Address Book in the launcher. Tap it to start the Address Book add-in.

 7

Two questions might immediately come to mind: Where did the Address Book’s icon come from
and how did ClassPad know the add-in’s name?

Both of these were set up in Dev-C++. Go back to Fig 1.1 and look at the files included in the
Address Book project. Notice that one of them is a Bitmap file. When Dev-C++ builds the Add-
in, it will use the bitmap file included in the project as its icon. If you do not include an icon
in the project, a default icon will be used. Note that your icon must be a 45x28 monochrome
bitmap.

The name of the Add-in comes from the name of the project. Look at Fig1.1 again and you
will see that this project’s name is “Address Book”, which is what appears on the ClassPad’s
launcher.

 8

Programming an Example Add-in Application
Now that you know how to compile and load projects in the included Development
Environment, we will now give some basic programming advice on creating add-in applications.
This guide is accompanied by an example add-in: the “Scribble” application, which will
eventually let you draw points on the screen, count the number drawn, save and load files, and
perform undo/redo operations.

Architecture
In this section we describe the basic structure of an application for the ClassPad, and the
necessary components to write a “Hello World” program.

The MainFrame
The base window for every application is called the MainFrame. Applications, menus, toolbars,
and the status bar are all loaded into the Mainframe. The basic structure of the Mainframe is as
follows:

 Menu

UI Area

Application Area

Status Area

The application area can be populated by 1 or 2 Application Windows, or by one application
window and a virtual keypad.

The Menu area contains the basic Frame menu, merged with the menu for the active application.

A currently active application can put UI elements such as toolbar buttons into the UI area.

 9

The Status area holds a status bar, with text fields that are available for the Mainframe and for
the application.

In general, the Mainframe manages which application is active, and also manages interaction
between applications. (For example, the mainframe will tell a window to update itself if data
that affects that window has been changed. More on this in section 4: Interaction Between
Windows.)

Constructing a Mainframe is easy. The constructor is of the form CPMainFrame(PegRect
rect). The only parameter is a rectangle, which corresponds to the desired size of the mainframe.
Since our mainframe should always be the size of the viewable screen, we use the pre-defined
rectangle:

PegRect rect = {MAINFRAME_LEFT, MAINFRAME_TOP, MAINFRAME_RIGHT,
 MAINFRAME_BOTTOM};

(These pre-defined values contain the pixel coordinates for the CPMainFrame rectangle.)

Module Windows
Constructing
The base class for any add-in application is CPModuleWindow. This class contains over-
writeable functions needed to customize your UI, and what will take place within your
application window. You will need to subclass your application window from
CPModuleWindow.

The constructor for this class is as follows:

CPModuleWindow(PegRect rect, CPModuleWindow* invoking_window,
 CPDocument* doc, CPMainFrame* frame)

Here, rect is the rectangle occupied by the window, and frame is a pointer to the
CPMainFrame in which to load the application. We will deal with invoking applications and
documents in later sections. For now, setting these parameters to zero will work fine.

Drawing
The CPModuleWindow class contains a Draw() function which has the instructions on what to
display in the window. The Draw() function should be overridden in order to add custom
features to your new application window. The basic structure of a Draw function is as follows:
void YourSubClass::Draw()
{
 BeginDraw();
 DrawFrame();

//Add other objects to draw here.
 EndDraw();
}

 10

All Draw functions must contain BeginDraw() and EndDraw(). The DrawFrame() function
draws the CPMainFrame into which the window is loaded.

The Draw() function is initially called to create your window, and any time your window needs
to be re-drawn. This includes if it is ever re-sized, or moved around. Thus, any objects that you
want to appear on your window must be specified in the Draw function.

Invalidating
As is typical of GUI programming, when an object needs to be re-drawn, the area of the screen
that it occupies must be “invalidated.” If the area is not invalidated, a re-draw will not succeed.
In most cases, the CPMainFrame will take care of invalidating the proper portion of the screen
(e.g. if windows are swapped, moved around, or re-sized.) However this is not always the case;
if you find yourself explicitly calling the Draw() function, or a similar function that draws
objects on the screen, you should Invalidate the rectangle which will be re-drawn.

To do so, use the function Invalidate(PegRect rect). A common usage is: Invalidate(mClient).
(mClient is a protected member of the base class PegThing, and corresponds to the rectangle
occupied by the window. Thus, Invalidate(mClient) specifies that the whole window will be re-
drawn.

PegAppInitialize
The PegAppInitialize() function is the “main” function for ClassPad applications. Every
application must contain this function. In it, you should construct a mainframe, construct any
windows, and load these windows into your mainframe. A typical construction is as follows:
void PegAppInitialize(PegPresentationManager *pPresentation)
{
 // Create the MainFrame

PegRect Rect;
Rect.Set(MAINFRAME_LEFT, MAINFRAME_TOP, MAINFRAME_RIGHT,

MAINFRAME_BOTTOM);
 CPMainFrame *mw = new CPMainFrame(Rect);

 // Create your window(s)

PegRect ChildRect = mw->FullAppRectangle();
 CPModuleWindow *swin = new CPModuleWindow(ChildRect,0,0,mw);

// Load the window into the MainFrame
mw->SetTopWindow(swin);

 // Set a main window for this module.
 mw->SetMainWindow(swin);

 // Add the MainFrame to the Peg Presentation Manager

pPresentation->Add(mw);
}

The functions FullAppRectangle(), BottomAppRectangle(), and TopAppRectangle() simply
return rectangles for the full screen, the bottom half, and top half respectively.

It is a good idea to specify a “main window” for your application, which cannot be closed from
the CP Menu. We do this with SetMainWindow.

 11

Finally, the last line of the function adds the MainFrame to the Peg Presentation Manager which
manages the entire platform.

Hello World Program: Scribble_1
We can now use this basic structure to create a “Hello World” application. This will be the first
step in creating a basic add-in application. Our application will be called “Scribble”, and will
eventually allow you to draw on the screen.

First, we derive a window class for this add-in. It will be called ScribbleWindow. For now, this
class needs only a constructor, and a Draw function.
class ScribbleWindow : public CPModuleWindow
{
public:

ScribbleWindow(PegRect rect, CPMainFrame* mf) :
CPModuleWindow(rect,0,0,mf) { }

void Draw();
}

An extra line will be added to the Draw() function in order to display “Hello World” in the
window.
void ScribbleWindow::Draw()
{
 BeginDraw();
 DrawFrame();
 PegPoint pp = {10,10};
 PegColor col = BLACK;
 DrawTextR(pp,"Hello World",col,PegTextThing::GetBasicFont());
 EndDraw();
}

The DrawTextR function draws the text “Hello World” starting at the location defined by the
coordinates of PegPoint pp relative to the top right corner of the window. DrawText will do the
same, only in absolute coordinates. The third and fourth parameters of this function are the text
color, and the font.

Finally, we just need to add a PegAppInitialize() function, create a MainFrame, and a
ScribbleWindow. We use basically the same code as listed in the template PegAppInitialize,
except we replace CPModuleWindow with ScribbleWindow. (In our example code, the
PegAppInitialize() function is kept in a separate file called PegMain.cpp.)

You can access this example, and build it by compiling and loading the project called
Scribble_1.dev (inside the Scribble_1 subdirectory). Below is a screenshot of our Hello World
window. Notice that there is a system menu in the upper right, but no other UI elements have
been added. Also notice that pressing the “Keyboard” button, or selecting Keyboard from the
system menu brings up the soft keyboard.

 12

Screenshots from our Hello_World application.

User Interface

The Message Function
The ClassPad receives User input through the Message function. Signals are sent to this
function when user input is received. These signals are then processed, and the program will
then take the appropriate course of action.

The Message function is a member of CPModuleWindow, and should be overridden to include
any UI signals your application may send. The typical construction is as follows:

SIGNED YourModuleWindow::Message(const PegMessage &Mesg)
{
 switch(Mesg.wType)
 {
 case ID1:

 // Put what to do when a message with ID1 is received here
 break;
 case ID2:
 // What to do when a message with ID2 is received.
 break;

// Other signals are managed by the base classes
default:

return CPModuleWindow::Message(Mesg);
 }
 return 0;
}

The message ID’s are really just numbers, and should be defined somewhere in your project.
When you create UI elements of your project, you will assign an ID to each element, it is these
ID’s that will then be processed by the Message function.

 13

Menus
Now that we have a message function to handle User input, we need to define some areas where
a user can provide that input.

Menu Description
You first must define a menu description. This will define the drop down menus at the top of the
screen. Our menu will have the form:
PegMenuDescriptionML ScribbleMainMenu[] = {
 {“Item2”, CMN_NO_ID, 0, AF_ENABLED, SubMenu1 },
 {“Item1”, CMN_NO_ID, 0, AF_ENABLED, SubMenu2 },
 {“”, CMN_NO_ID, 0, 0, 0}
};

As you can see, this declaration contains a list of PegMenuDescriptionML items. Each structure
contains a few important parameters. The first parameter is the name of the menu item, and what
will be displayed on the screen. The third parameter is the ID of the signal that will be sent to
the message function. (Since this is only the top menu and the actual menu items will be
contained in sub menus, we have left these as zero.) The fifth parameter is the name of the sub-
menu that will be opened by clicking on this item. We would then have to define descriptions
for these sub-menus as well. For example:
PegMenuDescriptionML SubMenu1[] = {
 {“Choice2”, CMN_NO_ID, ID_CHOICE1, AF_ENABLED, NULL },
 {“Choice1”, CMN_NO_ID, ID_CHOICE2, AF_ENABLED, NULL },
 {“”, CMN_NO_ID, 0, 0, 0}
};

The second parameter deals with multi-language support. In this example the value is set to
CMN_NO_ID. This means that regardless of the current language of the ClassPad, the menus
will always read “Item1” and “Item2”. If you are creating menus with common phrases (such as
“Copy”, “Paste”, “Cut”, etc) you can use the ClassPad defined language IDs found in
CPLangDatabase.h to support multiple languages. For example, this menu would read “Cut” and
“Paste” in the current language:

PegMenuDescriptionML SubMenu1[] = {
 {NULL, CMN_MENU_ED_CUT, ID_CUT, AF_ENABLED, NULL },
 {NULL, CMN_MENU_ED_PASTE, ID_PASTE, AF_ENABLED, NULL },
 {“”, CMN_NO_ID, 0, 0, 0}
};

We will use some of these common language IDs when creating the menus in Scribble.

The fourth parameter is a style flag. For our purposes, it will work fine as the value given above.

Note: All menus should be terminated by a blank menu item (the third item in the above
description.)

 14

The GetMenuDescriptionML Function
Finally, once we have defined our menus, we must add the GetMenuDescriptionML() function
to our module. This function should return a pointer to the topmost menu. For example:
PegMenuDescriptionML* YourModuleWindow::GetMenuDescriptionML()
{
 return ScribbleMainMenu;
}

Once we have done this, we have the working menu system shown below. Selecting “Choice1”
will send signal ID_CHOICE1 to the Message() function, and “Choice2” will send
ID_CHOICE2.

Screenshot of the menu described above

The Toolbar
We can add items to the toolbar in a similar fashion. To do so, we first need to override the
AddUI() member function of CPModuleWindow. This function is called whenever the UI area
of the MainFrame needs to be redrawn. Adding buttons to this area is quite easy; a typical
method is shown below:
void ScribbleWindow::AddUI()
{

PegTextButton* b = new PegTextButton(1,1, "Button1", BUTTON1_ID,
 AF_ENABLED|TT_COPY);

 m_ui->AddToolbarButton(b);

PegTextButton* b2 = new PegTextButton(35,1, "Button2", BUTTON2_ID,
 AF_ENABLED|TT_COPY);

 m_ui->AddToolbarButton(b2);
}

In this example, we have chosen to add “text buttons”, buttons that contain text. The
PegTextButton constructor’s first two arguments are the coordinates of the upper left corner of
the button (relative to the top left corner of the window.) The third argument is the name that
will be displayed on the button. The fourth argument is the ID that will be sent to the message
function when the button is clicked. Again, the fifth argument is a style flag that we’ll leave
alone.

Once we have defined our buttons, we add them to the UI window by using
m_ui->AddToolbarButton(b). m_ui is a protected member of CPModuleWindow, and is a
pointer to the UI window. A screenshot of this toolbar is shown below.

 15

Screenshot of the toolbar described above

It is also possible to add bitmap buttons. You can create them using the following method:

PegRect rr = GetToolbarButtonRect();
PegBitmapButton *b3 = new PegBitmapButton(rr,&gbPegBitmap,BUTTON_ID);

Notice the PegBitmapButton constructor takes three parameters: a rectangle that corresponds to
the size, a pointer to a PegBitmap and the ID that will be sent to the message function. (There is
a fourth parameter, which is a style flag, but we’ll use the default.)

There is a tool included with the SDK that will convert monochrome bitmaps into PegBitmaps.
They can then be used to create such buttons. Refer to the section on Scribble_2 for an example
of creating a toolbar with PegBitmapButtons.

Pen or Keypad Input
In addition to menus and toolbars, we also need to handle user input from the pen and keyboard.

Pen Input
CPWindow has virtual member functions to handle pen input. These are:
void OnLButtonDown(const PegPoint & p); // Called when the pen is first put
 // down on the screen.
void OnLButtonUp(const PegPoint & p); // Called when the pen is picked up
 // off the screen.
void OnPointerMove(const PegPoint & p); // Called when the pen is moved
 // around on the screen.

The PegPoint p is the location of the pen when the event is received. Simply override these
functions in your subclass of CPModuleWindow. Then, whenever a pen event takes place in
that window, the system will call the appropriate function. These functions are window-specific,
so you will have to override these functions for each window in which you wish to handle pen
input.

Keyboard Input
The CPWindow function for handling character input is:
void OnChar(const PegMessage & Mesg); // Called when keyboard input is

 // received

Again, you will need to override this function in order to handle keyboard input. This function
will be called when a key is pressed on the ClassPad’s hard or soft keyboard.

For ASCII input, Mesg.iData will contain the character code for the key pressed.

 16

Addition of UI Elements: Scribble_2
Using the techniques outlined above, we will add the following capabilities to our example Add-
in:

1. Add a Message function to handle signals from the menu and toolbar

2. Add a “Draw” menu. This menu will contain a single item “Clear” which will clear the
screen

3. Add a button to the toolbar. This will also Clear the screen

4. Add the capability of handling pen input so that a point will be drawn in the window
whenever the user touches the pen to the screen, or moves the pen around on the screen.

You can build this stage of the application by compiling and loading the Scribble_2.dev project
(inside the Scribble_2 subdirectory). Steps 1 and 2 are done almost exactly as shown above.

Adding a Bitmap Button to the Toolbar
In order to add a bitmap button, we must first create a PegBitmap object. We first begin with a
19x13 pixel monochrome bitmap. (Ours is called Clear.bmp, and is located in
Scribble_2\bitmaps).

To convert ClearBitmap.bmp into a .cpp file you can use the BMP Converter tool located
under the Tools menu of the SDK.

A screenshot of the BMP Converter tool.

Notice that the .cpp file defines the PegBitmap as gbClearBitmap. We can now use this to
create a toolbar button in Scribble.cpp:

extern PegBitmap gbClearBitmap;
void ScribbleWindow::AddUI()
{
 PegRect rr = GetToolbarButtonRect();

 PegBitmapButton *b3 = new PegBitmapButton(rr,&gbClearBitmap,IDB_CLEAR);
 m_ui->AddToolbarButton(b3);

}

Notice that we have given the button and the Clear menu item the same ID: IDB_CLEAR.
(They both perform the same task.)

 17

Adding a Child Window to the ScribbleWindow
For reasons that will become more obvious in the next section when we discuss scrolling, it is
desirable to have all the points drawn within a child window of the ScribbleWindow. We design
a separate class called DrawWindow that will keep track of the points drawn with the pointer.
The class declaration is shown below:
class DrawWindow: public CPWindow
{
protected:

 PegPoint* m_pointlist;
 int m_pointcount;

public:
 DrawWindow(PegRect rect);
 ~DrawWindow();

// Overwritten function to handle pointer events
 virtual void OnPointerMove(const PegPoint & p);

// These are functions specific to this add-in,
// in charge of drawing the points

 void DrawPoint(const PegPoint & p);
 void SavePoint(const PegPoint & p);
 void Draw();
 void ClearPoints();
};

As you can see, this class contains a pointer to an array where the coordinates of all the points
that have been drawn are stored. The class also keeps track of the total number of points.

Notice that we have only overridden OnPointerMove in order to draw the points. This is
because OnPointerMove is called immediately after an OnLButtonDown, so we don’t need to
override it.

Once we have this class in place, we must add it as a child to the ScribbleWindow class. We
first add a pointer to the window as a member of ScribbleWindow, and add the following to the
ScribbleWindow constructor:

 rect.wBottom -= 1;
 rect.wTop += 1;
 m_win = new DrawWindow(rect);
 Add(m_win);

(Here m_win is the pointer to the DrawWindow.) We use the command Add to add this second
window as a child of the first. We make the DrawWindow almost the same size as the full
application.

Finally, once we have added a child window to our ScribbleWindow, we must modify the
Draw() function .
void ScribbleWindow::Draw()
{
 BeginDraw();
 DrawFrame();
 DrawChildren();
 EndDraw();

 18

}

The addition of the DrawChildren() function ensures that all child windows will be drawn when
the parent is re-drawn. Screenshots of our example are shown below.

Writing drawn with “Scribble” is cleared when the “Clear” button is pressed.

Multiple Windows

Adding a Second Window
As stated in the introduction, the ClassPad is capable of displaying two applications windows at
the same time. Adding a second window is done almost identically as creating the first window.
The window should be a subclass of CPModuleWindow, should be constructed to be the
appropriate size, and should then be loaded into the MainFrame. The MainFrame will take care
of re-sizing the primary window. The following code is typical for adding a new window to the
bottom of the screen.

PegRect ChildRect = mw->BottomAppRectangle();
 CPModuleWindow *swin = new CPModuleWindow(ChildRect,0,0,mw)

mw->SetBottomWindow(swin);

Here, mw is the pointer to the CPMainFrame where the window will be loaded. (The
CPModuleWindow function GetMainFrame() can be useful when adding a new window from
within an existing window. It returns a pointer to the MainFrame in which the current window is
loaded.)

Invoking Applications
When you use one window to launch another, it is usually a good choice to make the first
window the "Invoking Application” of the second. When a window is closed, its invoking
application will replace it (if one exists.) Remember that “main” windows (set with
SetMainWindow) cannot be closed from the CP menu (at the upper left corner of the screen.)

 19

In order to set an invoking application, we just have to modify the constructor of the new
window. Recall that the constructor for CPModuleWindow has the following form:

CPModuleWindow(PegRect rect, CPModuleWindow* invoking_window,
 CPDocument* doc, CPMainFrame* frame)

Up until now, we have always set the second parameter to zero. If instead we enter a pointer to
the invoking window as the second parameter, the invoking window will replace the new
window when it is closed. For an example, see the section below where we apply these concepts
to the Scribble Application.

Scrolling
Adding scroll bars to your window is very simple, provided your window is structured correctly.
In general, the following line needs to be added to the constructor for the window:

SetScrollMode(WSM_AUTOSCROLL);

The parameter is one of several: WSM_AUTOSCROLL adds automatic horizontal and vertical
scrollbars. WSM_AUTOVSCROLL and WSM_AUTOHSCROLL add only vertical and
horizontal scrollbars respectively.

Once you have added the above line to your window’s constructor, scrollbars will be added to
the window so that all of the window’s children can be viewed. This is why we created a second
draw window in the Scribble Application. By making the DrawWindow a child of the
ScribbleWindow, scrollbars will automatically be added to the ScribbleWindow so that the
entirety of its child DrawWindow can be viewed. (By making the DrawWindow the size of a full
application, scrollbars will only be necessary when the window is re-sized in order to make room
for another window.)

If we had drawn the points within the ScribbleWindow, scrollbars would not be added to the
window because the points are not considered children of the ScribbleWindow.

Message Boxes
Adding message boxes to your application is a simple two-step process. Message boxes have
their own class: PegMessageWindow. There are three constructors; we will only use one here:

PegMessageWindow(const PegRect &Rect, const PEGCHAR *Title, const PEGCHAR

*Message=NULL, WORD wStyle=MW_OK|FF_RAISED, WORD wStyle2=NULL, PegBitmap
*pIcon=NULL, PegThing *Owner=NULL)

The first two parameters specify the dialog’s position (rectangle) and its title. The third
parameter is the message you want to display. The forth and fifth parameters are style flags,
we’ll use the default as usual. The sixth parameter is an icon for the message box, and the
seventh specifies whom this message box reports to. We will not use these features.

In general, once you have created a message box, the second step is to call the function
Execute() which will launch the dialog. The return value of the Execute() function will be the

 20

ID of the button clicked. This is useful for determining which option the user has selected.
These techniques will be illustrated below.

Important: Note that PegMessageBoxes are self-deleting objects. They delete themselves after
they are closed. Thus, you must make sure that the dialog is created with the new operator, but
you do not have to worry about deleting the object. Simply call the Execute() function;
everything else will be taken care of.

The Status Bar
Thus far, we have not addressed the status area located at the bottom of the application screen.
This area is often useful for displaying extra information in your application. Adding text to this
area is easy to do because of a pointer to the area CPModuleWindow::m_status_bar.

This is a protected variable, but you can gain access to it through the function: GetStatusBar()
which returns a variable of type PegStatusBar*.

It is then easy to add text with the function SetTextField() which adds text to the already created
status bar. (The bar is created when you first create your module window.) To do so, pass in
two arguments: the first argument should be “1” denoting the one (and only) text field in the
status bar. The second argument should be the text you would like to add.

For example, to add the text “Status: OK” to the status bar, a typical construction is as follows:

YourModuleWindow::SetStatusBar()
{
 // Get a pointer to the status bar
 PegStatusBar* bar = GetStatusBar();

 // Set the text
 bar->SetTextField(1,“Status: OK”);
}

Then, of course we would have to call this function from a convenient location to change the
status bar’s text.

We will use a similar construction in our example. Now that we know how to create multiple
windows, we will use the status bar to display which window we are in.

Adding a New Window, Dialog, and Scrollbars: Scribble_3
Using the above techniques, we will add the following functionality to the Scribble Application:

1. The ability to launch a second window that will display the current number of points in the
DrawWindow.

2. Make the ScribbleWindow the invoking window for the new window. So the
ScribbleWindow will replace it when it is closed.

3. Turn scrolling on in the ScribbleWindow, so scrollbars will be added when the window is
resized.

 21

4. Create a status bar for each window which displays which window currently has focus, and
the current position (full screen, top window, or bottom window) of the window.

5. Add a dialog box that will pop up when the “Clear” button is pressed. This dialog will ask if
the user wants to clear all the points. If they select “OK”, the points will be cleared.

You can build this version of Scribble by opening the Scribble_3.dev project located inside the
Scribble_3 subdirectory. An explanation of important changes is given below.

Creating the Count Window
The second window should again be sub-classed from CPModuleWindow. For now, the only
function necessary is Draw(). Notice that the constructor for the CounterWindow has a
parameter for the Invoking window:

CounterWindow(PegRect rect, CPModuleWindow* invoking_window,
CPMainFrame* frame) :CPModuleWindow(rect, invoking_window, 0, frame) {}

Launching the Count Window

In order to launch the count window, we added a second tool bar button to the Scribble Window,
and modified the Message() function in order to handle this button. We then added a new
function OnCount() which actually creates the CounterWindow:

void ScribbleWindow::OnCount()
{
 CPMainFrame * mf = GetMainFrame();
 PegRect ChildRect = mf->BottomAppRectangle();
 CounterWindow* cwin = new CounterWindow(ChildRect,this,mf);
 mf->SetBottomWindow(cwin);
}

Notice that this is set as the invoking window; we have made the ScribbleWindow the invoking
application for this window.

Drawing the Count Window
The only function that is necessary for this new window at the moment is Draw(). The syntax is
below. Notice the use of GetInvokingWindow() as a way to get a pointer to the
ScribbleWindow. Also note that we have added a new function CountPoints() to
ScribbleWindow which returns the total number of points on screen.
void CounterWindow::Draw()
{
 BeginDraw();
 DrawFrame();

 // Get the number of points from the DrawWindow
 ScribbleWindow* invoker = (ScribbleWindow*) GetInvokingWindow();
 int number_of_points = invoker->CountPoints();

 // Convert number of points to string format
 unsigned char count[5];
 CP_IntToString(number_of_points,count);

 22

 // Draw a string displaying the number of points.
 CPString str = "Number of Points: ";
 str += (char*) count;
 PegPoint p = {10,10};
 PegColor color = BLACK;
 DrawTextR(p,str.Text(),color, PegTextThing::GetBasicFont());

 EndDraw();
}

Also note that the point count will only be current right after launching the window. There is no
functionality to update the count as more points are drawn yet. In the above function we have
used the utility class CPString. For more information on utility classes, see the SDK Reference
Guide

Adding Scrollbars
We have added the SetScrollMode(WSM_AUTOVSCROLL) to the constructor of the
ScribbleWindow. Notice that when the window is re-sized, you can scroll to see all points that
have been drawn.

Adding the Status Bar
We have added the function SetScribbleStatusBar() to the scribble window and
SetCounterStatusBar() to the counter window to set the status bar. These functions are very
similar – they both update the status bar to reflect the current screen state. Since each
CPModuleWindow derived class has a status bar, both classes need their own function to set
their status bar. The code for SetScribbleStatusBar() looks like this:
void ScribbleWindow::SetScribbleStatusBar()
{
 CPMainFrame *mf = GetMainFrame();
 PegStatusBar *bar = GetStatusBar();
 if (mf && bar) {
 FrameState state = mf->State();
 CPString status = "Scribble: ";
 if(mf->KeypadOn())
 status += "Keypad Open";
 else
 {
 switch (state)
 {
 case FS_SINGLE_APP:
 status += "Full Screen";
 break;

 case FS_TWO_APPS:
 if (mReal == mf->TopAppRectangle())
 status += "Top Window";
 else
 status += "Bottom Window";
 break;
 }
 }
 bar->SetTextField(1,status);
 }
}

 23

Here we have used the CPMainFrame functions TopAppActive(), State(), and KeypadOn() to
determine the state of the window. Then, we use GetStatusBar() and SetTextField() to set the
text in the status bar. (Again we have used the CPString utility class. For more information, see
the SDK Reference Guide.)

To avoid calling these functions explicitly from their classes’ Draw() functions, we create a user
defined message, PM_SCRIBBLE_SIZE_CHANGED, that is pushed to the MessageQueue
anytime our windows are resized. The reason for doing this as opposed to just calling our
function on the PM_SIZE message is that the window state is not updated until after the
windows have been resized. Therefore, if we try to call status bar functions when the PM_SIZE
message is received, it will be too soon. Here is the code in the message function where we
intercept the PM_SIZE message and send our own PM_SCRIBBLE_SIZE_CHANGED
message:
SIGNED ScribbleWindow::Message(const PegMessage &Mesg)
{
 switch(Mesg.wType)
 {
 case PM_SIZE:
 CPModuleWindow::Message(Mesg);
 {
 PegMessage msg(this,PM_SCRIBBLE_SIZE_CHANGED);
 MessageQueue()->Push(msg);
 }
 break;
:
:
}

Message type PM_SCRIBBLE_SIZE_CHANGED is defined in Scribble.h.

Pushing this message will by itself will not accomplish anything. We must then catch the
PM_SCRIBBLE_SIZE_CHANGED message in ScribbleWindow’s and CoutnerWindow’s
Message() functions, and then call the class function to update the status bar. Here is the
portion of ScribbleWindow’s Message() function that does this:

SIGNED ScribbleWindow::Message(const PegMessage &Mesg)
{
 switch(Mesg.wType)
 {
:
:
 case PM_SCRIBBLE_SIZE_CHANGED:
 SetScribbleStatusBar();
 break;
:
:

}
}

Screenshots of the new Scribble Application are shown below. Notice that the status bar at the
bottom displays the current window position.

 24

Scrollbars, a status bar, and a new Counter Window added to the Scribble Application

Adding a Message Box
We have added the following function to ScribbleWindow:

WORD ScribbleWindow::ClearAllPopup()
{
 PegMessageWindow *pDlg = new PegMessageWindow(GetLang(CMN_MENU_ED_DEF),
 GetLang(CMN_CLEARALL_SURE), MW_OK|MW_CANCEL|FF_RAISED);
 return pDlg->Execute();
}

Notice that we define the title and message using the GetLang() function and an ID from
CPLangDatabase.h. This will cause the message box to display the correct message depending
on what the current language of the ClassPad is. Also notice that the last line calls the Execute()
function, which will return the ID of the button clicked when the dialog is closed.

We use this fact in the ScribbleWindow::OnClear() function, which is called when the “Clear”
button is pressed. We have modified it to include the following:

void ScribbleWindow::OnClear()
{
 // Popup a dialog
 // Only clear points it OK is clicked
 if(ClearAllPopup()==IDB_OK)
 {
 m_win->ClearPoints();
 Redraw();
 }
}

Notice that the Clear button now first pops up the dialog box. Because the return value of the
ClearAllPopup () function is the ID of the button clicked, we proceed to clear the points only if
the “OK” button is clicked. A screenshot of the dialog is shown below.

 25

A modal dialog box

Interaction Between Windows
A logical next step is to have the Point Count update as we draw more points, instead of having
to launch the Count Window every time. In order to do this, we need to explore the concept of
Documents.

Documents and Windows
Until now, we have left the third parameter in our CPModuleWindow’s constructor equal to
zero. This is the parameter that specifies a document for the window. Typically, a document is
an object that contains all the data for a particular window. We have not needed to use one yet,
because our application is simple enough that we can keep track of our data within our window.
However, in more complicated applications, the use of a document is an excellent way to keep
the data (document) separate from the display of the data (window.)

In order to create a document for our window, we need to subclass CPDocument that has a
constructor of the form:

CPDocument(CPMainFrame * frame)

In our class declaration, we also need to override the following pure virtual functions. (They will
not affect our program, but we must have them in order to avoid errors.)

 virtual WORD DocType() { return 0; }
 virtual WORD Version() { return 1; }

Finally, we must link our Module to the newly created document. This is accomplished with the
third parameter of our module’s constructor:

YourModuleWindow(PegRect rect, CPModuleWindow* invoking_window,

CPDocument *doc, CPMainFrame * frame)
: CPModuleWindow(rect, invoking_window, doc,frame) {}

 26

We can then access the document using the GetDocument() member function of
CPModuleWindow.

Documents and Changing Data
Documents are not only useful as a container for your window’s data, they also allow for live
updating of windows. This interaction comes through two similarly named functions:
OnDataChanged (a virtual member of CPModuleWindow), and OnChangedData (a member
of CPDocument.)

Whenever data is changed within a document, one should call the OnChangedData function.
Once this function is called, the MainFrame will then call the OnDataChanged function for the
window which points to the changed document. For clarification, it is the developer’s
responsibility to:

1. Call OnChangedData (a member of the document) whenever data is changed in the
document, and you would like to update the corresponding windows.

2. Override OnDataChanged (a member of the CPModuleWindow) to provide instructions

on how to update the window when data has been changed.

The MainFrame will take care of the rest.

Linking Windows Together
The Document-window structure is such that one document can contain data used in many
different windows. Further, when you call OnChangedData(), the MainFrame will call
OnDataChanged() for every window which is linked to that particular document. This allows
changes made in one window to be viewed in a second, and vice versa.

Live Updating in the Scribble Application: Scribble_4
Using the above technique, we will add the following capability to the Scribble application:

1. Create a new document class, and link it to both the ScribbleWindow, and the
CounterWindow.

2. Call OnChangedData() and override OnDataChanged() so the CounterWindow will
update the current point count whenever a point is drawn, or the screen is cleared.

Creating the ScribbleDocument class
Because we have neglected documents until now, our project could use a bit of re-structuring in
order to accommodate them. First, we need to create our document class. The class declaration
is shown below:
class ScribbleDocument: public CPDocument
{
protected:

 27

 int m_counter;
 PegPoint * m_pointlist;

public:

 // Standard constructor for a document, document must

// be loaded into the mainframe
 ScribbleDocument(CPMainFrame * frame);
 virtual ~ScribbleDocument();

 // Functions used to get a point information
 CPString GetCountAsString();
 PegPoint GetPoint(int i) {return m_pointlist[i];}

 // Functions to manage the Point list
 void SavePoint(const PegPoint & p);
 void ClearPoints();

 // Functions to manage the counter
 inline int GetCount() {return m_counter;}

 // These are pure virtual functions that must be overwritten
 virtual WORD DocType();
 virtual WORD Version();
};

Notice that the document has completely taken over all management of the points. To do this,
we have moved the members m_counter, and m_pointlist here from the DrawWindow, and we
have also moved the functions SavePoint and ClearPoints.

Once we have created the document, we must modify the constructors of the ScribbleWindow,
and CounterWindow to accommodate a document. The updated constructors now have one extra
parameter—the 3rd parameter now points to the document.

 ScribbleWindow(PegRect rect, ScribbleDocument * doc, CPMainFrame* frame)
 :CPModuleWindow(rect,0,doc,frame)

CounterWindow(PegRect rect, CPModuleWindow* invoking_window,
 ScribbleDocument * doc, CPMainFrame* frame)

 :CPModuleWindow(rect,invoking_window,doc,frame)

Finally, in pegmain.cpp, we must create the document, and use it in constructing our windows.
(Alternatively, we could use the CPModuleWindow’s function SetDocument() to link the
document to each respective window instead of modifying the constructors.)

We will also want to have access to the document from within the DrawWindow (the document
must be updated whenever a point is drawn or cleared.) Because DrawWindow is a CPWindow,
not a CPModuleWindow, it can’t be linked to the document as above. Instead, we will simply
include a pointer to the document as a protected member of DrawWindow.

Restructuring the DrawWindow
Previously, the DrawWindow had been in charge of keeping track of the points. Because we
want the document to do this instead, the DrawWindow needs to be changed.

 28

The result of all this shuffling is a cleaner DrawWindow class that is only in charge of drawing
the points. Below is the modified DrawWindow class declaration.

class DrawWindow: public CPWindow
{
protected:
 // Data abstracted into Document class
 ScribbleDocument * m_doc;

public:
 // Constructor takes a window rectangle and a pointer to the document
 DrawWindow(PegRect rect, ScribbleDocument * doc);

 //Overwritten function to Draw Scribble Data
 virtual void Draw();

 // Overwritten function to handle pointer events
 virtual void OnPointerMove(const PegPoint & p);

 // These are functions specific to this add-in,

// in charge of drawing the points
 void DrawPoint(const PegPoint & p);
};

Allowing for Live Updates
Now, in order to allow for live updates, we need to call OnChangedData whenever data in the
document changes. We choose to call this function from within the functions OnPointerMove
(when a point is added) and OnClear (when the screen is cleared.) Notice we don’t have to
override OnChangedData, we simply need to call it. It will then call OnDataChanged for our
windows. The OnClear function which now contains OnChangedData is shown below:

void ScribbleWindow::OnClear()
{
 // Clear Points only if OK is selected from the dialog
 if(ClearAllPopup()==IDB_OK)
 {
 ScribbleDocument* sdoc = (ScribbleDocument*) GetDocument();
 sdoc->ClearPoints();
 Redraw();

 // The document has changed, call OnChangedData.
 // This will update all affected windows
 // by calling OnDataChanged for each one.

 sdoc->OnChangedData(this);
 }
}

Finally, we must override OnDataChanged() for the CounterWindow, since we need to provide
specific instructions about what to do when the document has changed. Since the
CounterWindow retrieves the current point count whenever it draws itself, all we need is the
function shown below:

void CounterWindow::OnDataChanged()
{
 Invalidate(mClient);

 29

Draw();
}

This simply tells the CounterWindow to re-draw itself whenever the point count changes. This
in turn will update the display accordingly.

The Scribble Application is now completely capable of live updating. You can build the
example by loading the Scribble_4.dev project (located inside the Scribble_4 subdirectory).

Saving/Restoring Information
The last feature we will implement is the ability to save and restore states of the application.
This will be useful in implementing Undo/Redo and Save/Load capability.

Undo/Redo
Because some form of the undo mechanism is used in nearly all applications, there is a good deal
of functionality already set up to support it.

The relevant class is CPUndoThing; it contains most of the necessary functions to implement an
undo/redo action. You will have to specify the steps your application will take to actually
perform the undo.

The MainFrame carries a pointer to a CPUndoThing. This points to the object that performed
the last undoable action. Thus, in order to implement undo functionality, you must make your
window (or some other piece of your application) a subclass of CPUndoThing.

Secondly, you must call the function ActivateUndo() whenever you complete an action that is
undoable. ActivateUndo() alerts the mainframe that this should now be the current undo thing.

Once you have done this, you will need to override the following member functions of
CPUndoThing:

1. Undo() – This function is called to perform the actual undo. You should include

instructions about what steps are needed to perform your undo.

2. Release() – This function is called by the Main Frame when the object is no longer
the current undo thing. Thus, if possible, you should free up some memory that is
used to store the undo state, since the action is no longer undoable.

We will implement undo/redo functionality in the Scribble application at the end of this section

Saving Files
In order to save files into the ClassPad’s MCS file system, we make use of the CPWriteMCSFile
class.

 30

Creating a CPWriteMCSFile Object
In order to write data, we first need to create a CPWriteMCSFile object. This object has a
constructor of the following form:
CPWriteMCSFile(const char* name, const char* path=NULL,UCHAR type=0)

name and path are simply strings that refer to the file’s desired name, and folder. The type
parameter specifies the type of file to be saved. We will always save our variables as type
IMU_MCS_TypeMem. These variables show up as type “MEM” in the variable manager.

Writing Data to the File
Once you have created the file, simply utilize one of the many “write” members of the base class
CPWriteFile to write the data to the file.

WriteInt(int i) –writes an int to the file.
WriteDouble(double xx) – writes a double to the file.
WriteFloat(float xx) – writes a float to the file.
WriteBytes (void* buffer, int nBytes) -- Writes n bytes from the buffer to the file.

Unfortunately there is one extra step before your data is written to the file. This is due to the fact
that the CPWriteMCSFile is not created with a specific size, thus no memory is allocated for
the file when it is created. However, writing the data using the functions above allows the file to
keep track of its size. Once everything has been written, call the Realize() function to allocate
the appropriate memory for the file.

Then, once you have called the Realize() function, you must write the data again. This time,
since the memory has been allocated, it will actually be written to your file.

The Header for MEM files
Files of type IMU_MCS_TypeMem should also include a header that contains their application
type, and data type. This header should be the first thing written, and the first thing read out.

To construct and write your header, use the following syntax:

CPMemFileHeader header = CPMemFileHeader(“application name”,“data type”);
header.write(f); // f is the CPWriteMCSFile to which you are writing

Example Code
An example of how to write an the integer “count” into a file called “test” is shown below:

// Create the CPWriteMCSFile and the header
CPWriteMCSFile f(“test”,”main”,IMU_MCS_TypeMem)
CPMemFileHeader header (“test app”,“test data”);

// Write integer the first time to compute the size of the file
header.write(f);
f.WriteInt(count);

 31

// Call the Realize function to allocate the appropriate memory for the file
f.Realize();

// Write the data for the second time. This time it is written to memory
header.Write(f);
f.WriteInt(count);

This two-step process is always necessary whenever writing data to an MCS file.

Opening Files
In order to load files in from the MCS file system, we make use of the CPReadMCSFile class.

Creating the CPReadMCSFile Object
The constructor for a CPReadMCSFile is identical to that for a CPWriteMCSFile:

CPWriteMCSFile(const char* name, const char* path=NULL,UCHAR type=0)

Here name and path are the filename, and folder location of the file, and type is the data type of
the file. As before, we will always use a type of IMU_MCS_TypeMem.

Reading in Data from the File
Once you have created your CPReadMCSFile object, simply use one of the following functions
to read in the appropriate data type:

int ReadInt()
double ReadDouble()
float ReadFloat()
void ReadBytes (void* buffer, int nBytes) //Read n bytes into the buffer

Reading in the Header for MEM Files
Data should be read in the same order that it was written. For MEM files, the header is the first
thing that is written, so we should accordingly read it first.

As before, you need to create an object of type CPMemFileHeader, and then use its member
function Read which takes a CPReadMCSFile as its argument. See the code of the Scribble
Application for an example.

Adding Save/Load and Undo to the Example: Scribble_5
Using the above techniques, we will now add the following capability to the Scribble
Application:

1. A simple Undo/Redo function, which will allow the user to undo the last string of points
drawn.

 32

2. The ability to save and load files in the application

Implementing the Undo in the Scribble Document
Our undo/redo function will behave as follows: Whenever the user puts the pen down to draw a
new string of points, we will save a copy of the point list and point count. These copies will then
be restored if the user selects “Undo”. We will not allow any other actions (such as clearing the
points) to be undoable.

The Scribble Document should be the object that actually performs the undo. Thus, we have to
make a few changes to the document. The document will need to carry the current list of points
and a count, as well as an undo list of points and a count. Since this is getting a little
complicated, it is probably a good time to create a class that abstracts our array of points. This
way we will only have to keep up with the current point list and the undo point list in the
ScribbleDocument. We call this new class ScribblePointArray and define it as:
class ScribblePointArray
{
protected:
 int m_counter;
 PegPoint* m_pointlist;

public:

// constructor and destructor
 ScribblePointArray();
 ~ScribblePointArray();

 // Size returns the number of points
 int Size() { return m_counter; }
 // Add a new point
 void Add(const PegPoint& p);
 // clear all points and free up memory
 void Clear();
 // array operator. Get point at index
 PegPoint operator[](int index) const;
 // copy "points"
 ScribblePointArray& operator=(const ScribblePointArray& points);
 // Swap my data and the data from "points"
 void Swap(ScribblePointArray& points);
 // Write data to a file
 void Write(CPWriteFile &f);
 // Read data from a file
 void Read(CPReadFile &f);
};

Secondly, we must actually implement the functions that will save the undo state, restore the
undo state, and release the undo state. The modified class declaration is shown below.
class ScribbleDocument: public CPDocument
{
protected:

 ScribblePointArray m_pointlist;
 // Class for the Undo State
 ScribblePointArray m_undo_pointlist;
public:
:
:
 // Functions to manage the Undo/Redo state
 void SetUndoState();

 33

 void RestoreUndoState();
 void ReleaseUndoState();
}

The SetUndoState function will copy the current point count, and point list into the “undo”
variables.

The RestoreUndoState function will swap the “undo state members” with the current state
members.

The ReleaseUndoState function will reset the undo state variables to their initial values –
freeing up any memory taken up by the undo state. We will call this function whenever the
points are cleared from the document. Because we don’t want the “Clear” action to be undoable,
we should release the undo state whenever this action is performed.

All of these functions are available in the final version of ScribbleDocument.cpp. These tasks
are quite straightforward, so we will not list the functions here.

Implementing the Undo in the Scribble Window
Now that we have the desired functionality in the Document, we need to implement the
Undo/Redo mechanism from within our application. First, we must subclass our Scribble
Window from CPUndoThing. We must also override the Undo() and Release() functions of
CPUndoThing which provide instructions on how to actually perform the undo. Finally, we will
add a function that saves the current undo state. Portions of the new class declaration are shown
below:
class ScribbleWindow: public CPModuleWindow, public CPUndoThing
{
protected:

 DrawWindow* m_win;

public:

:

:

 // Undo Functions
 virtual void Undo();
 virtual void Release();
 void SaveUndoState();
}
As stated above, all of the work of the Undo will take place within the document. The scribble
window is designed simply to handle the user input, pass relevant instructions on to the
document, and redraw itself when something changes. This should be evident from the simple
implementation of the functions shown below:

void ScribbleWindow::Undo()
{
 ScribbleDocument * doc = (ScribbleDocument*) GetDocument();

 // Restore Undo State, and update all dependent windows
 doc->RestoreUndoState();
 doc->OnChangedData(this);

 34

 // Redraw the window
 Invalidate(mClient);
 Draw();
}

void ScribbleWindow::Release()
{
 ScribbleDocument * doc = (ScribbleDocument*) GetDocument();
 doc->ReleaseUndoState();
}

Activating the Undo
We must now select when we want to activate the undo. The only undoable action in our
specification is drawing points. Thus, we want to activate the undo whenever the user places the
pen down. We’ve created a function to save the undo state and activate the undo, and called it
SaveUndoState(). The function is shown below:
void ScribbleWindow::SaveUndoState()
{
 // Save the current state in case of Undo.
 ScribbleDocument* doc = (ScribbleDocument*) GetDocument();
 doc->SetUndoState();

 // Notify the Mainframe that this window possesses the current undoable

// action
 ActivateUndo();
}
Notice the call to ActivateUndo() at the end of the function. This call must be made whenever
you would like an action to be undoable. The function makes this the current undo thing. Thus,
the ScribbleWindow::Undo() will be called when the user performs an Undo.

Finally, we want to set the undo state whenever the user puts the pen down to draw a new string
of points. Thus, inside the DrawWindow class, we have overridden OnLButtonDown and call
the SetUndoState() function from within it. The code is shown below:

void DrawWindow::OnLButtonDown(const PegPoint &p)
{
 // Save the Undo state as the pen is first put down.
 // Undo will then remove the latest scribble

//(points drawn since the last PenDown)

 ScribbleWindow * parent =

 (ScribbleWindow *) GetMainFrame()->MainWindow();
 parent->SetUndoState();
}

Adding the Undo/Redo Menu Item
Finally, we must include a menu item that performs the undo/redo.

PegMenuDescriptionML ScribbleEditMenu[] = {
 DECLARE_MENU_ITEM(CMN_MENU_UNDOREDO, FWM_UNDO)
 { "", CMN_NO_ID, 0, 0, NULL }
};

 35

Because the Undo/Redo signal is used frequently, we can simply add a menu item using the code
above: DECLARE_MENU_ITEM(CMN_MENU_UNDOREDO, FWM_UNDO). This adds
a “Undo/Redo” item to the menu, and assigns it the proper ID.

After completing this step, the Undo/Redo mechanism is complete. Screenshots are shown at the
end of this section.

Adding the Saving/Loading Functionality to Scribble
Since the ScribbleDocument completely describes the state of our application, in order to save
the file, we must write the document to a file, and read the document when loading in a file.

For our save/load UI, we will make use of a class called StorageManager. This is a dialog box
that displays all the files of a particular type in a specified folder. The constructor is shown
below:
StorageManager::StorageManager(CPString* filename, CPString* pathname,

 ActionStates action, UCHAR type)

filename and pathname are strings denoting the name and location of your desired file. You do
not need to worry about these values when creating your storage manager, but make sure that
you have valid CPString objects that you can pass in.

The third parameter designates whether you will be saving or loading a file. Pass in
STORAGE_ACTION_SAVE or STORAGE_ACTION_OPEN accordingly.

The fourth parameter specifies the type of files to be shown. (Again, we will always use
IMU_MCS_TypeMem.)
Because the storage manager is a dialog box, we must then call the Execute() function to bring it
up. Remember that the dialog box will return a value that corresponds to the button pressed
when it is closed, and that the dialog will delete itself after calling the Execute() function. For
the storage manager, we should be expecting the following button ID’s:

IDB_CANCEL, IDB_STORAGE_SAVE, IDB_STORAGE_OPEN.

Writing the Save and Load Functions
We have added functions named OnSave() and OnLoad() to the ScribbleWindow, and have
added message ID’s and menu items as expected. Then, the function implementation uses the
storage manager to quickly implement saving and loading. The OnLoad function is listed
below:

void ScribbleWindow::OnLoad()
{
 CPString folder, name;

 // Create the storage manager window, and call the Execute function to

// bring it up
 // The filename and foldername are stored in the string variables "name"

// and "folder" after the dialog
 // is closed.
 StorageManager *manager = new StorageManager(&name,&folder,

STORAGE_ACTION_OPEN, IMU_MCS_TypeMem);
 int ret = manager->Execute();

 36

 // Open the file only if the open button is pressed, and both the

// name and folder strings are not empty.
if (ret ==IDB_STORAGE_OPEN && name.Length() && folder.Length())

 {
 CPReadMCSFile f(name.Text(),folder.Text(),IMU_MCS_TypeMem);

 // Check that the file exists, and is valid
 if (f.FileExists() && f.IsNotError())
 {
 ScribbleDocument * doc = (ScribbleDocument *) GetDocument();
 // Tell the document to read in the data

doc->Read(f);

 // Notify all dependent windows that the document has

// changed
 doc->OnChangedData(this);
 }
 else
 f.ErrorPopup();
 }

 // Redraw the entire window with the new points
 Invalidate(mClient);
 Draw();
 SaveUndoState();
}
Notice that the name and folder strings are set by actions the user performs while the dialog is
open. After the user clicks “Open”, the function checks that they have selected a folder and a
file, and then creates a CPReadMCSFile based on these values. (Additional checking is done to
make sure that the file is valid with the functions f.FileExists(), and f.IsNotError()).

Read and Write Methods for the Document
The above function then calls the Read function of the document, which will read in the header
and then call our new ScribblePointArray’s Read function. (This function’s definition is shown
below.) When creating these functions, make sure that you read and write the data in the same
order.

void ScribbleDocument::Read(CPReadFile &f)
{
 // Read in the header
 CPMEMFileHeader header(SCRIBBLE_APP_NAME, SCRIBBLE_DATA_NAME);
 header.Read(f);
 m_pointlist.Read(f);
 SetUndoState();
}

void ScribblePointArray::Read(CPReadFile &f)
{
 // Clear out the existing points
 Clear();

 // Read in the point count
 m_counter = f.ReadInt();
 if (m_counter) {
 // Create a new point list of the appropriate size
 m_pointlist = new PegPoint[m_counter];

 37

 // Read in the points
 PegPoint p;
 for (int ii=0; ii< m_counter && f.IsNotError(); ii++)
 {
 p.x=f.ReadInt();
 p.y=f.ReadInt();
 m_pointlist[ii] = p;
 }
 }
 // If an error happened while reading, then the data is probably bad
 if (f.ErrorFlag()) {
 Clear();
 }
}

The procedure for saving the file is quite similar to that shown above, however we must
remember to complete the two step write process that was described in the earlier section.
Below is ScribbleDocument::Write function.
void ScribbleDocument::Write(CPWriteFile &f)
{
 // Write once to compute size
 WriteData(f);
 f.Realize();

 // Write a second time

// this time it is actually written to the allocated memory
 if(f.is_open())
 WriteData(f);

}

(The WriteData function goes through the details of writing the point count, and point list
similar to how the Read function reads in this data.) All these functions can be viewed in their
entirety inside the Scribble_5.dev project (located inside the Scribble_5 subdirectory.

This completes our development of Scribble. You can access all the completed features by
loading Scribble_5.dev, building the project, and loading it onto your ClassPad. Screenshots of
this last phase of the project are shown below.

 38

Performing an Undo

Saving and Loading the file “test”

More Information
The techniques presented in this document are intended to only be a brief introduction to
application development for the ClassPad. The ClassPad 300 SDK Programming Guide
provides explanations and examples on how to use most of the classes in the SDK. The
ClassPad 300 SDK Reference Guide includes full reference on classes and functions available
for Add-in development. Please see these documents for more information on programming
Add-in applications for the ClassPad 300.

Advanced Topics

Upload Add-in Tool
If you grow impatient of browsing to your .cpa and confirming the overwrite each time you
upload an Add-in to your ClassPad, then try “Upload Add-in” from the tools menu instead of
“Launch Add-in Installer”.

Upload Add-in will automatically start the transfer of your project’s .cpa file to the ClassPad.
Make sure that before starting Load Add-in that your ClassPad is waiting to receive an Add-in
Application. When transferring the add-in, any previous add-ins with the same name on the
ClassPad will be overwritten without a warning message. This tool assumes that you are
developing an add-in and will be sending an add-in with the same name to the ClassPad
regularly.

 39

Compiler and Linker
Dev-C++ automatically creates a makefile for a project to assist in compilation and linking.
Dev-C++ assumes that the user is using GNU’s GCC to compile and link a program and creates
the makefile using GCC’s syntax. Even though the SDK does use GCC to create a windows
executable, the compiler that it is uses to compile a ClassPad add-in is SHC.EXE. Since
SHC.EXE does not use the same syntax as GCC, a wrapper is used to convert GCC syntax into
SHC syntax.

In Dev-C++, open the Tools->Compiler Options Menu and click on the Programs tab. You
will see that gcc_shcgcc.exe is listed as the compiler program instead of gcc.exe for the Default
Compiler Set. This is the wrapper that will take the commands Dev-C++ sends and convert them
into the correct syntax for both GCC.EXE and SHC.EXE.

If you click on the compile tab, you will find a place to send extra arguments to the compiler.
The arguments that are listed by default are all in SHC syntax. Any extra options that you wish
to send to the SHC compiler must be sent in SHC.EXE’s syntax. You can see a list of SHC’s
options by going to the command line and typing “shc”. If you need to include an option that
takes a list of arguments, take care not put spaces between the arguments. For example, the
syntax for defines are -DEF=DEFINE1,DEFINE2,DEFINE3 not –DEF=DEFINE1,
DEFINE2, DEFINE3.
Any options passed to the compiler that are not valid SHC syntax will be sent to the GCC
compiler. If there are any options where GCC and SHC share the same syntax, SHC will take
precedence.

If you wish to send extra arguments to the compiler, be aware that adding extra options to the
compiler under Compiler Options will save these options for all projects. To add commands to
the compiler for the current project, go to Project->Project Options and then click on the
parameters tab.

For example, let’s say that you want to send a define of GCC to gcc.exe and SHC to shc.exe. To
add this to the current project, click on the Project Menu then Project Options. This will bring up

 40

the Project Options Dialog. Then click on the Parameters tab. In the text box under Compiler
and C++ compiler type in “-DEF=SHC –DGCC”. This will send the –DEF=SHC command to
shc.exe and the –DGCC command to gcc.

 The wrapper also calls the SHC linker, OPTLNK.EXE, and the GCC linker, LD.EXE. Options
can be sent to the linker in the same fashion that they are sent to the compiler. Once again, make
sure that you use OPTLNK.EXE’s syntax to send commands to OPTLINK and LD.EXE’s
syntax to send commands to LD.

After running the linker, the wrapper prepares the add-in that will be installed on the ClassPad.
This includes setting the header of the add-in (via setheader.exe), adding the name of the add-in
(via putname.exe) and compressing the add-in (via compress.exe). If you’d like to see exactly
what the wrapper does, click on the Compile Log tab after building an add-in. All commands
that Dev-C++ sends to the wrapper are followed by the actual call to shc.exe then the call to
gcc.exe.

Changing Compiler Sets
 If SHC seems to compile correctly while GCC
is giving errors, you can choose to only build an
add-in and not a Windows executable. To do
this, click on the Project menu then Project
Options. On the Project Options dialog click on
Compiler. At the top you will notice a drop
down list labeled “Compiler”. Click on this and
choose “Add-in Only”. This will call a
different wrapper that will only compile using
shc.exe. If you wish to compile only a Windows
executable, that option is also available.

Using Assembly
The wrapper also allows the use of simple
assembly files in a project. Not all assembly
is supported. If the wrapper is not correctly
building an add-in that uses assembly, try
building the project from the command line
(see the next section).

All assembly files used in a Dev-C++ project
must have the extension .src and will only be
compiled with SHC. Building of assembly
files is not supported via the wrapper for
GCC. If you choose to use assembly
through the IDE, there is some additional
setup that must be done.

Dev-C++ creates a makefile that contains a compile statement for each .c/.cpp file in a project.
If a file does not have a .cpp/.c extension then by default there will be no rules to make the file in
the makefile. To change this open the Projet->Project Options Menu and click on the Files tab.

 41

Here you will see a list of all files in your project. To include the assembly file in the
compilation of your project, select it and check “Include in compilation” and “Include in
linking”. The “Override this command” checkbox is automatically selected and “<override this
command>” appears in the text box. If you wish to compile the file with the default options that
are sent to the compiler, just delete all the text from the textbox. However, if your build requires
more options then you can enter the command line call with the arguments needed to the
ClassPad assembly compiler, ashsm.exe, in this textbox.

Be aware that if you include assembly in your program GCC will not attempt to compile it. You
can still build a ClassPad add-in, but cannot build a Windows executable.

Building From the Command Line
If you do not want to use the wrapper, you can build a ClassPad add-in from the command line.
Here are the steps that you must follow:

1. Compile all source files. The first thing that the wrapper does is to compile all of your
source files into object files. For C/C++ code the compiler SHC.EXE is used. Here is an
example of a command that would compile the file Test.cpp:

C:\PROJECT_DIR> shc.exe -OB="outputdir\Test.o" -I="SDK_PATH\cp_include"
-cpu=sh3 -NOLOGO -RTTI=OFF -NOEX "Test.cpp"

If you have any assembly files in your project you must compile them using ASMSH.EXE.
Here is an example command line call to compile the assembly file Test.src:

C:\PROJECT_DIR> ASMSH.EXE -O="outputdir\test.o" -I="SDK_PATH\cp_include"
"test.src"

If you plan on using assembly in your add-in, it is recommended that you build using the
command line. While some simple assembly can be made to work with the wrapper, not all
assembly files will work.

2. Link all of your object files. The next step after compilation is to link all of your object files
with the tool OPTLNK.EXE. The first thing you need to do is create a command file that lists
all of the object files in your project. Each object file should be on its own line and be preceded
with “input=”. For example, a project that had the source files Test1.cpp, Test2.cpp and
Test3.cpp would have a command file that looked like:

input=“outputdir\Test1.o”
input=“outputdir\Test2.o”
input=“outputdir\Test3.o”

Name this file objects.sub and pass it to the linker like this:

C:\PROJECT_DIR>optlnk.exe -SU="objects.sub" -output=aplmain.lib -FO=library
-NOLO -NOM

3. Link your library file with ClassPad object files and libraries. Next you need to create
an .rld file from your .lib by linking with the ClassPad object and library files. The wrapper

 42

creates and uses a makefile to do this. There is a template for this makefile called
MakeCPA_template.mak in your SDK’s BIN directory. Copy this file to your project location
and open it in a text editor.

There are only two lines that you will have to change in this makefile: the location of your SDK
and the location of your output directory. When setting these directories, make sure that your
paths either do not have spaces or that you use the short path name. The place to edit is clearly
marked by comments in the makefile:

EDIT HERE

The ROOT of your SDK installation
#("c:\program files\CASIO\ClassPad 300 SDK" by default)
SDK= C:\PROGRA~1\CASIO\CLASSP~1
The output directory where you want the .RLD and .MAP files created
OUT_DIR=C:\proj\CPAddins\HELLOW~1\OUTPUT~1

Once you have successfully edited the makfile, call it from the command line with make:

C:\PROJECT_OUTPUT_DIR> make –f MakeCPA.mak

This will create the .RLD file and .MAP file in your specified output directory.

Note: If you get any L2310 Warnings, you can safely ignore them.

4. Set the header and icon for the Add-in. Next you must set your Add-in’s header and icon.
This is done using the tool SETHEADER.EXE in the SDK\BIN directory. The output is
a .CPA file that can be named anything you like. In this example we will name it “Test.CPA”:

C:\PROJECT_OUTPUT_DIR\> setheader "ADDINAPL.rld" "Test.cpa" -vp0100 -vl1000 -
m2 -pA -o -bI"YourIcon.bmp”

5. Set the Name of the Add-in. In this step you set the name that will appear on the ClassPad
Launcher for your add-in. This time we use the tool PUTNAME.EXE in the SDK\BIN
directory. We send the executable the .CPA from the previous step and a text string indicating
the name of the Add-in:

C:\PROJECT_OUTPUT_DIR> putname.exe -p0 -wp "Test.cpa" "My Test"

6. Rename your Add-in and run CPADATAMAKE.EXE. This step will prepare your add-in
for installation on the ClassPad. The command CPADATAMAKE.EXE sets up the file
ADDINAPA.BIN, and then appends your add-in to it. Because CPADATAMAKE.EXE expects
your file to be named ADDINAPL.BIN, you must rename your .CPA file. The following
commands will rename “Test.cpa” and call CPADATAMAKE.EXE:

C:\PROJECT_OUTPUT_DIR\>ren Test.cpa ADDINAPL.BIN

 43

C:\PROJECT_OUTPUT_DIR\>CPADATAMAKE.EXE

This will rename ADDINAPL.BIN to ADDINAPA.BIN.

7. Compress the Add-in. The final step is to compress the add-in for transfer to the ClassPad.
To compress the add-in use COMPRESS.EXE as follows:

C:\PROJECT_OUTPUT_DIR\> COMPRESS.EXE -r ADDINAPA.BIN

This will create the compressed file ADDINAPA.BI_. Rename this file back to Test.cpa and
you’re done!

C:\PROJECT_OUTPUT_DIR\> ren ADDINAPA.BI_ Test.cpa

Debugging in Dev-C++
Dev-C++ GDB Front-end
The Windows executable that the wrapper creates is a debug build by default. You can use Dev-
C++ as a front end to the GNU debugger gdb.exe to debug your project.

An active debugging session. Notice the breakpoint set in the editor and the debug window at the bottom of

the screen.

 44

To add breakpoints to your project, simply open a file then click in the gutter on the line where
you wish to add a breakpoint. Once you have added all of the breakpoints you wish to add, click
on the Debug button in the toolbar to start the debugging session.

When the debug session begins, the debug window will appear at the bottom of the screen. Once
your program hits the breakpoint you can use this window to step over, step into, continue, run to
cursor or stop the execution of the debugger.

Once the debugging session has begun, if you try to add or remove a breakpoint you will get an
error message saying that a breakpoint cannot be added while the debugger is running. To pause
the debugger without stopping it, bring up the console window that opened with the ClassPad
GUI. With the console window having focus press Ctrl-C. This will pause the debugger and
allow you to add or remove breakpoints. When you are ready for the debugger to begin again,
click the continue button in the debug window.

Printf Debugging
 Not only can you use the console window that opens with your ClassPad executable to pause the
debugger, but you can also use it to debug by printing to standard out. Since the ClassPad
doesn’t have printf or cout, you must make sure that any calls to these functions are only
compiled by gcc. To do this, surround them with #ifdef WIN32 #endif macros. For example:

int main(int argc, char** argv)
{
 int x, z=0;
 x = z+10;
#ifdef WIN32
 printf(“%i\n”, x);
#endif
 return 0;
}

The WIN32 define is sent to gcc when compiling, but is not sent to shc. This allows you to add
anything that you want only gcc to compile in an #ifdef.

Debugging on The ClassPad
At the present time there are no advanced debugging tools available to debug on the ClassPad
directly. There are, however, a couple of ways to debug using “printf-style” debugging.

Message Boxes
The most straightforward way to debug is with pop-up message boxes. Creating a message box
is a very simple process: create a peg rectangle, create a new instance of PegMessageWindow,
and execute the dialog.

To make the process easier, you can create a debug function that takes your debug string and
displays it in a message box:

void DebugPopUp(CPString msg)
{

PegRect rr = {5,100, 140, 150};
PegMessageWindow *msg = new PegMessageWindow(rr, "debug", msg);
msg->Execute();

 45

}

Then to output a debug string simply call DebugPopUp passing in your string.

DebugPopUp(“test1”);

Status Bar
The status bar can also be used as a debugging tool. The major difference between using pop-
ups and the status bar is that the status bar will not pause the program. This can be a
disadvantage when you have several messages being replaced before they can be read. If you are
echoing several messages and want to read them all, pop-ups are probably the better choice.

To use the status bar create a function like this:

void SetStatusBar(CPString str)
{
 PegStatusBar* bar = GetStatusBar();
 bar->SetTextField(1,str);
}

When you would like to print debug output to the status bar, just call the function with your
debug string.

MCS Variables
A final debugging option is to create MCS variable(s) with different values depending on what
code your program executes. Like before, you should create a function to simplify the
debugging process:

void SetMCSVar(word val)
{
 OBCD dat;
 word size;
 Cal_setn_OBC(val,&dat);
 size = sizeof(OBCD);
 BMCSCreateVariable("main", "debug", IMU_MCS_TypeReal, size, (UCHAR*)&dat);
}

 46

At places where you would like to update the variable just call SetMCSVar() with the desired
value. After the program has run, you can check the variable manager to see the final value of
your variable. This method has the disadvantage of not immediately showing the debug output.
But if you do not want to pause your program with pop-ups and cannot use the status bar, this is
a good option.

 47

	T
	ClassPad 300 SDK Environment
	Dev-C++
	Using Dev-C++

	Compiling and loading an add-in
	Changing Compiler Sets
	Compiling
	Loading

	Programming an Example Add-in Application
	Architecture
	The MainFrame
	Module Windows
	Constructing
	Drawing
	Invalidating
	PegAppInitialize

	Hello World Program: Scribble_1

	User Interface
	The Message Function
	Menus
	Menu Description
	The GetMenuDescriptionML Function

	The Toolbar
	Pen or Keypad Input
	Pen Input
	Keyboard Input

	Addition of UI Elements: Scribble_2
	Adding a Bitmap Button to the Toolbar
	Adding a Child Window to the ScribbleWindow

	Multiple Windows
	Adding a Second Window
	Invoking Applications
	Scrolling
	Message Boxes
	The Status Bar
	Adding a New Window, Dialog, and Scrollbars: Scribble_3
	Creating the Count Window
	Launching the Count Window
	Drawing the Count Window
	Adding Scrollbars
	Adding the Status Bar
	Adding a Message Box

	Interaction Between Windows
	Documents and Windows
	virtual WORD DocType() { return 0; }

	Documents and Changing Data
	Linking Windows Together

	Live Updating in the Scribble Application: Scribble_4
	Creating the ScribbleDocument class
	Restructuring the DrawWindow
	Allowing for Live Updates

	Saving/Restoring Information
	Undo/Redo
	Saving Files
	Creating a CPWriteMCSFile Object
	Writing Data to the File
	The Header for MEM files
	Example Code

	Opening Files
	Creating the CPReadMCSFile Object
	Reading in Data from the File
	Reading in the Header for MEM Files

	Adding Save/Load and Undo to the Example: Scribble_5
	Implementing the Undo in the Scribble Document
	Implementing the Undo in the Scribble Window
	Activating the Undo
	Adding the Undo/Redo Menu Item
	Adding the Saving/Loading Functionality to Scribble
	Writing the Save and Load Functions
	Read and Write Methods for the Document

	More Information
	Advanced Topics
	Upload Add-in Tool
	Compiler and Linker
	Changing Compiler Sets

	Using Assembly
	Building From the Command Line
	Debugging in Dev-C++
	Dev-C++ GDB Front-end
	Printf Debugging

	Debugging on The ClassPad
	Message Boxes
	Status Bar
	MCS Variables

