ClassPad 300 SDK Tutorial

This document will demonstrate the process of developing, compiling and loading a ssimple add-
in application for the ClassPad 300. This document will present the basic classes and an
example approach to add-in development, but will not serve as a detailed reference. Please use
the included Reference help file as a more detailed reference.

ClassPad

Table of Contents

CLASSPAD 300 SDK ENVIRONM ENT oottt eee e e e e e e e neaeaeeeees 4
(D] Y O o TR 4
COMPILING AND LOADING AN ADD TN 1.uuttiteeeeessnsnisssssesssssssssssesssesssssssresssesesssmmmreteeeresn 5

PROGRAMMING AN EXAMPLE ADD-IN APPLICATION ... 9

ARCHITECTURE ...ttt e et tee e e e e e e e et e ee e e aeeeeeseeeeanaaeeeeeeeeennnnnaes 9
B ISR N TN =N T 9
IV ODULE VW INDOWS .. e e e e s nnnnnnnnnnn 10
HELLO WORLD PROGRAM: SCRIBBLE_L......ccciiiiiiiiaiiieiee e eiee e eessiee s aeesne e s e sneesneeeneas 12

USER INT ERFACE ...ttt ettt et e e e e e e e e e e e e s e e e e e e e e nnsnnnnnnnnnnnnnnnnn 13
THE M ESSAGE FUNGCTION L.ieittttesseieeeeessssssssssesesessssnsssssssssessssnnssesssesessssnssesseesesssmmnnnrreeeerennn 13
Y= NS TR 14
THE TOOLBAR. ..ctetettttee et e tetetesttaasssesesesessssaassssasesessssasssesesessssassssssssessssnnsssesssenssnnnsrssesssennns 15
PEN OR KEY PAD INPUT ..eeeeeeeee ettt e e e e e et e e e e e e e e e e e e e e e ee e e e e e e eaneeee e e e eeeeenaeeeeenaeeeennnanens 16
ADDITION OF Ul ELEMENTS. SCRIBBLE_2.....ceiiitiieitieeeteeesteeesseessseesssseessseeesnseessnseessnssessnseesas 17

MULTIPLE WINDOW S, .t e e s snnssnnnnnnnnnn 19
ADDING A SECOND VWINDOW ... sssssssssssssssnssnssnnnsnnnnnnns 19
[NV OKING A PPLICATIONS .. itittuteeetttseeessssesessasssesstesessatesessateeessntesesnnresesnnsseresnnrseresneserennns 19
SCROLLING eettteteteeeeeeeeeeeeeseseseseseseeesesesererereeeseretereeeresteeterererererereeerererererererererer ettt 20
LY S ST T =l =) =R 20
THE STATUS B AR oottt e e e e e e e e e ettt e e e e e eeeeeeee e aaaeeeeeeeeeeennaaaeeeeeeeennnnnaaanseeeeeeennnn 21
ADDING A NEW WINDOW, DIALOG, AND SCROLLBARS:. SCRIBBLE_3.....ccciiiiiiriresieeesieessnenens 21

INTERACTION BETWEEN WINDOWS esenensnnnnnnnnn 26
DOCUMENTS AND VWINDOWS ...uieeiieieeesettssssesesessssssnssssssssessssnssssesssesssssnmnaesesesessssnmnnnseseeeeeenns 26
DOCUMENTS AND CHANGING DATA oottt ettt tee e e e e e e e et eeeteaaaeeseseseeessnnaaaaseseesnnnnns 27
LIVE UPDATING IN THE SCRIBBLE APPLICATION: SCRIBBLE 4cccciveeeiieeceieeeecteeesveeesneeesnee e 27

SAVING/RESTORING INFORMATION ...t eaee e e e e e e naaennnens 30
UNDOIREDO ..ot ettt e e e e e e e e e et e e e e e e e e e e eeeeaeeneea e e eeeeeeeeeeaaaenneeeees 30
NS Y N = T ISR 30
(@] = N TNl o [=SSR 32
ADDING SAVE/LOAD AND UNDO TO THE EXAMPLE: SCRIBBLE 5cccviieeieiiecie e e 32

M ORE I INFORM AT LON ettt e e e e e e e e e e ee e e e e e e e nssnnnnnnnnnnnnnnnnnn 39

ADVANGCED TOPI C ..ot e et e e e e e e e e e e e e eaaaeeeeeeeeeeaaaaeeeeaeeeenennaaaens 39
UPLOAD ADDIN TOOL ettt ettt e et e e e e et eee e e eeeeenaeeeeeanaaeeennnaeens 39
(O] = T S =y o 1N = = 40
UUSING A SSEMBLY ttttttttuieeessssesessassesessassessssssesesnasesssnntesssnssesssnnssesssnssesssnnssesssnnseessnnseersnnnres 41
BUILDING FROM THE COMMAND LINE ... ssnnnnnn 42

DEBUGGING IN DEV-C++

DEBUGGING ON THE CLASSPAD ..ottt nnne e

ClassPad 300 SDK Environment

In this section we will take a brief look at the ClassPad 300 SDK Environment. Thisincludesa
description of the SDK’s IDE as well as how to compile and load an add-in onto the ClassPad
300. We will assume that you have aready installed the SDK into its default directory.

Dev-C++

The ClassPad 300 SDK uses Dev-C++ asits IDE. Dev-C++ isafull-featured Integrated
Development Environment (IDE) for the C/C++ programming language. The most recent
version available at the time of packaging isincluded in the SDK installer. However, for bug
fixes and new updates be sure to check the devel oper’ s web site: http://www.bloodshed.net/. Be
aware that the ClassPad DLL has been compiled with MinGW 3.2. Even if you upgrade Dev-
C++ it isrecommended that you continue to use the MinGW 3.2 compiler.

In general Dev-C++ uses the GNU compiler to create C/C++ programs. A ClassPad add-in,
however, is created using the HITACHI SH compiler. In order to seamlessly integrate
compilation of an add-in in Dev-C++ awrapper tool was created to convert GCC syntax into SH
syntax. Thistool, along with an update to Dev-C++'sini and cfg file allow you to choose
compiler setsthat will create an add-in using SHC and/or GCC.

Using Dev-C++

Before concerning ourselves with the details of the wrapper, let’ s take a moment to go over the
basic stepsin creating an add-in in Dev-C++.

Dev-C++ will help you organize your projects, and seamlessly compile then with the help of the
wrapper tools. Dev-C++ isalso used as afront end to the GNU debugger, GDB.

After installing the SDK, you can start Dev-C++ from the Start Menu->Programs-> Dev-Cpp.

To explore the IDE, let’s open addr ess.dev — the project file for the example Address Book add-
in. Click on File->Open Project or File... and browse to Documents\ClassPad 300
SDK\Examples\AddressBook\address.dev. We will use this as an example to explain the
basics of Dev-C++.

http://www.bloodshed.net/

Dev-C++ 4.9.8.7 - [Address Book] - address.dev
File Edit 3Search Miew Project Execute Debug Tools WS Window Help

=101 =]

oo oo
=R - E R S EE =)
J DNEW I:Elnsert ﬁToggIe |!|Gnto HI jl j|
Project |Elasses| Debugl addresshook. cpp |
E@ Address Book Al Addressiindow Functions ;I
""" address.brmp LT i
----- addresshook. cpp
----- addrezsbook_h
""" Contact.cpp J4 This iz the drop down "Search" menu
""" contacF.h PegMenulescriptionML AddressBookMenu[] =
""" Pegmain.cpp { "Find Next", CMN Mo ID, IDE FIND MEXT, AF ENAELE
""" PEGMAIN.HPP { "Zearch", CMN MO ID, IDB SE4RCH, AF ENAELE
[, CMN NO ID, O, o,
i
A7 This is the main menu which contains the AddressBookMenu
IPEI;ﬂ'IEI'H.lI]EEH:‘-ri]:lt-il:InI'IL iddressEookMainMenul[] = |
{ "Search'", CHMN WO ID, O, AF ENAELE™
q | v

EE Compiler |m Flemun:esl d]]] Compile Lu:ugl Q;ﬁﬂ Debugl @ Find Hesultsl Clnsel

Line | File | Mezzage
15 CACP_SDEMesamplessaddress book... CB0B5S [E] Espected a ;"
18 CACP_SDE\esamplessaddress book.. CBO1 2 [wW) Parzing restarts here after previous spntas enorn

15 CACP_SDEMewampleshaddress book... CE020[E] Identifier "AddressBookMainMeny' is undefined
CACP_SDEMewampleshaddress book... [Build Enrar] [obj/addressbook.o] Error 1

3

[151 | [Inser 220 Lines in file

(Fig 1.1) — A typical Dev-C++ screenshot.

Figure 1.1 shows atypical view of Dev-C++. Window 1 lists al of thefilesin the present
project. Double click on any file to openit in the editor (window 2). Window 3 has several tabs
that you can click on for different information. Presently it shows errors after compiling this
project. Notice that the error selected in window 3 is highlighted in window 2. Thereis more

genera information on how to use Dev-C++ on the creator’ s website at

http://www.bloodshed.net/dev/index.html. From here on we will focus on using Dev-C++ for

creating an add-in.

Compiling and loading an add-in

Now that we have loaded the Address Book add-in, let’s walk through building and installing it

on the ClassPad.

Changing Compiler Sets

The wrapper tools that come with the SDK are capable of doing three different builds. ClassPad
Add-in only, Windows .EXE only or both ClassPad Add-in and Windows .EXE at the same
time. You can control which compiler is used when by selecting different compiler sets.

http://www.bloodshed.net/dev/index.html

For this example we will use the compiler that builds both the Windows .EXE and the ClassPad
Add-in —the “CPSDK Add-in .CPA and Windows .EXE Compiler” setting. To ensure that this
isthe current compiler, click on the Project menu and select Project Options (or press Alt+p).
When the Project Options dialog appears, click on the compiler tab.

Project Options El

MOTE: Theze zettingz will ovemde the global Compiler Options affecting thiz project anly.

Compiler: CPSDE Add-in .CPA and Windows .EXE Compiler j
- Default compiler

i CPSDE Add-in .CP& only
CP5DK Windows .EXE anl
Code G n DWHSDTFUHTFI?U% L8 QL L2

T=

Dizplays one emor per line Mo

-0 plirnization

\/ Ok x Cancel | ? Help

Here you will see adrop down menu that has the three compiler sets described above plus the
Dev-C++ default compiler set (to develop in C/C++). Select “CPSDK Add-in .CPA and
Windows .EXE Compiler” from the list to build both a ClassPad add-in and a Windows
executable. Remember that the “ Default Compiler” isthe compiler that comes set up in Dev-
C++. You CANNOT use this compiler to build a ClassPad Add-in as it will call GCC (not SH).
Also note that this compiler cannot build a Window’ s .EXE for the ClassPad because its
compiler and linker settings are not set correctly. When building an Add-in you will only use the
three compiler sets that the CPSDK installed.

Compiling

Once you have chosen the correct compiler set, building is as ssimple as clicking on the toolbar.
The build button §3 will build any newly modified source files, link them and then build the
ClassPad add-in. The build all button 55 will rebuild the entire project. The build and run
button will compile the program and then run it automatically. (Note: This only works when
using a compiler set that builds a Windows Executable.) 1f you switch compiler sets, make
sureto do acompleterebuild. Otherwise GCC may try to use some of SHC's object files or
vice versa.

While the program builds, you can follow the compiler’s output in window 3. The compiler will
produce 2 output files in Documents\ClassPad 300 SDK\Examples\Addr ess Book\outputdir
when it has finished. One of these is a Windows executable that can be run by clicking on the

run button O in the toolbar. The second isafile called address.cpa. Thisisthe compiled add

in file that will be installed on the ClassPad. In general, the .cpafile and .exefile are created in
the “outputdir” subdirectory of your project’s directory.

Loading

To load the .cpafile we will use CASIO’s Add-in Installer. From Dev-C++, the add-in installer
is accessible from the Tools Menu.

Once you have started the Add-in Installer, plug your ClassPad into your computer using the
USB cable. If the ClassPad automatically starts the procedure to transfer via the manager, press
the cancel button.

To get the ClassPad ready to receive the add-in, choose communications from the launcher.
Next click on the Link Menu -> Install -> Add-in. Finally, you will be asked if you are sending
and Add-in App or anew language. Make sure Add-in App is selected and press OK. The
ClassPad is now ready to receive the add-in.

N Setup o Link Setup
Transrmit B E'*IE*'"IE'EIEEZ:I Y
Current Setting:
g Screen R 23S Update = bl
Add-In B
Wakeup Enabled Add-In software will be
installed.
®@Hdd-In ArPp.
O Language
Cancel
Communica...
A1l Data Commmunication] Fage 2.2]
Fig.1.2 Fig.1.3 Fig. 1.4

Open Communications from thelauncher (Figl.2). Then click on theLink M enu->Install->Add-in (Figl.3).
Finally, make surethat Add-in App issdected and click OK to begin thetransfer (Figl.4).

Go back to the Add-in Installer and click on the Add-in ->
Application... menu. Thiswill bring up afile Browser.
Navigate to Documents\ClassPad 300

SDK\Examples\Addr essBook\outputdir\address.cpa and
press O and the transmission of the add-in from your computer
to your ClassPad will begin. When the process has completed
you will get a message saying that the connection to the ClassPad is being closed.

Y ou can now disconnect the ClassPad and exit the Add-in Installer.

On the ClassPad, go back to the launcher. At the top of the screen make sure that “All” appears
in the drop down next to the Menu title. Now scroll to the bottom of the screen and you will find
the Address Book in the launcher. Tap it to start the Address Book add-in.

[% Search

Addres= E.

(A [B[WIE] >
PR —
Pranet: []
N —

Address=:

Fage 3/4

Two questions might immediately come to mind: Where did the Address Book’ sicon come from
and how did ClassPad know the add-in’s name?

Both of these were set up in Dev-C++. Go back to Fig 1.1 and look at the filesincluded in the
Address Book project. Notice that one of them isaBitmap file. When Dev-C++ builds the Add-
in, it will usethe bitmap fileincluded in the project asitsicon. If you do not include anicon
in the project, a default icon will be used. Note that your icon must be a 45x28 monochrome

bitmap.

The name of the Add-in comes from the name of the project. Look at Figl.1 again and you
will seethat this project’s nameis“ Address Book”, which is what appears on the ClassPad’' s

launcher.

X

Fage 4.4

Programming an Example Add-in Application

Now that you know how to compile and load projectsin the included Development
Environment, we will now give some basic programming advice on creating add-in applications.
This guide is accompanied by an example add-in: the “ Scribble” application, which will
eventually let you draw points on the screen, count the number drawn, save and load files, and
perform undo/redo operations.

Architecture

In this section we describe the basic structure of an application for the ClassPad, and the
necessary components to write a“Hello World” program.

The MainFrame

The base window for every application is called the MainFrame. Applications, menus, toolbars,
and the status bar are all loaded into the Mainframe. The basic structure of the Mainframeis as
follows:

Menu
Ul Area

Application Area

Status Area

The application area can be populated by 1 or 2 Application Windows, or by one application
window and avirtual keypad.

The Menu area contains the basic Frame menu, merged with the menu for the active application.

A currently active application can put Ul elements such as toolbar buttonsinto the Ul area.

The Status area holds a status bar, with text fields that are available for the Mainframe and for
the application.

In general, the Mainframe manages which application is active, and also manages interaction
between applications. (For example, the mainframe will tell awindow to update itself if data
that affects that window has been changed. More on thisin section 4: Interaction Between
Windows.)

Constructing aMainframeis easy. The constructor is of the form CPM ainFrame(PegRect
rect). Theonly parameter is arectangle, which corresponds to the desired size of the mainframe.
Since our mainframe should always be the size of the viewabl e screen, we use the pre-defined
rectangle:

PegRect rect = {MAI NFRAVE_LEFT, MAI NFRAVE TOP, MAI NFRAME R GHT,
MAI NFRAVE_BOTTOM ;

(These pre-defined values contain the pixel coordinates for the CPMainFrame rectangle.)

Module Windows

Constructing

The base class for any add-in application is CPModuléWindow. This class contains over-
writeable functions needed to customize your Ul, and what will take place within your
application window. Y ou will need to subclass your application window from
CPModuleWindow.

The constructor for this classis as follows:

CPModul eW ndow(PegRect rect, CPModul eW ndow* i nvoki ng_w ndow,
CPDocurent * doc, CPMai nFrame* frane)

Here, rect isthe rectangle occupied by the window, and frame is a pointer to the
CPMainFrame in which to load the application. We will deal with invoking applications and
documentsin later sections. For now, setting these parameters to zero will work fine.

Drawing

The CPModuleWindow class contains a Draw() function which has the instructions on what to
display in the window. The Draw() function should be overridden in order to add custom
features to your new application window. The basic structure of a Draw function is as follows:

voi d Your Subd ass:: Draw()
{
Begi nDraw) ;
Dr awFr ane() ;
/1 Add ot her objects to draw here.
EndDr aw() ;

10

All Draw functions must contain BeginDraw() and EndDraw(). The DrawFrame() function
draws the CPMainFrame into which the window is |oaded.

The Draw() function isinitially called to create your window, and any time your window needs
to bere-drawn. Thisincludesif it is ever re-sized, or moved around. Thus, any objects that you
want to appear on your window must be specified in the Draw function.

Invalidating

Asistypica of GUI programming, when an object needs to be re-drawn, the area of the screen
that it occupies must be “invalidated.” If the areais not invalidated, a re-draw will not succeed.
In most cases, the CPMainFrame will take care of invalidating the proper portion of the screen
(e.g. if windows are swapped, moved around, or re-sized.) However thisis not always the case;
if you find yourself explicitly calling the Draw() function, or asimilar function that draws
objects on the screen, you should Invalidate the rectangle which will be re-drawn.

To do so, use the function I nvalidate(PegRect rect). A common usageis: I nvalidate(mClient).
(mClient is a protected member of the base class PegThing, and corresponds to the rectangle
occupied by the window. Thus, Invalidate(mClient) specifies that the whole window will be re-
drawn.

PegApplnitialize

The PegApplnitialize() function isthe “main” function for ClassPad applications. Every
application must contain this function. Init, you should construct a mainframe, construct any
windows, and load these windows into your mainframe. A typical construction is asfollows:

voi d PegApplnitialize(PegPresentati onManager *pPresentation)

/1 Create the MinFrane

PegRect Rect;

Rect . Set (MAI NFRAVE_LEFT, MAI NFRAVE _TOP, MAI NFRAME RI GHT,
MAI NFRAME_BOTTOM ;

CPMai nFranme *nmw = new CPMai nFranme(Rect) ;

/1 Create your w ndow(s)
PegRect Chil dRect = mw >Ful | AppRect angl e();
CPMbdul eW ndow *swi n = new CPMbdul eW ndow Chi | dRect, 0, 0, my) ;

/! Load the wi ndow into the Mi nFrane
mr >Set TopW ndow(swi n) ;

// Set a main wi ndow for this npdul e.
mw >Set Mai nW ndow(swi n) ;

/1 Add the MainFrane to the Peg Presentation Manager

pPresent ati on- >Add(m) ;
}

The functions Full AppRectangle(), BottomAppRectangle(), and TopAppRectangle() smply
return rectangles for the full screen, the bottom half, and top half respectively.

It isagood ideato specify a“main window” for your application, which cannot be closed from
the CP Menu. We do thiswith SetMainWindow.

11

Finally, the last line of the function adds the MainFrame to the Peg Presentation Manager which
manages the entire platform.

Hello World Program: Scribble 1

We can now use this basic structure to create a“Hello World” application. Thiswill be the first
step in creating a basic add-in application. Our application will be called “ Scribble”, and will
eventually allow you to draw on the screen.

First, we derive awindow class for thisadd-in. It will be called ScribbleWindow. For now, this
class needs only a constructor, and a Draw function.

class Scri bbl eWndow : public CPModul eW ndow
{
publi c:

Scri bbl eW ndow PegRect rect, CPMainFrane* nf) :
CPModul eW ndow(rect, 0,0,nf) { }
void Draw();

An extraline will be added to the Draw() function in order to display “Hello World” in the
window.

voi d Scri bbl eW ndow: : Dr aw()
{

Begi nDraw) ;

Dr awFr ane() ;

PegPoi nt pp = {10, 10};

PegCol or col = BLACK;

Dr awText R(pp, "Hel 1 o Worl d", col , PegText Thi ng: : Get Basi cFont ());
EndDr aw() ;

}

The DrawTextR function draws the text “Hello World” starting at the location defined by the
coordinates of PegPoint pp relative to the top right corner of the window. DrawText will do the
same, only in absolute coordinates. The third and fourth parameters of this function are the text
color, and the font.

Finally, we just need to add a PegAppl nitialize() function, create a MainFrame, and a
ScribblewWindow. We use basically the same code as listed in the template PegApplnitialize,
except we replace CPModuleWindow with ScribbleWindow. (In our example code, the
PegApplnitialize() function is kept in a separate file called PegMain.cpp.)

Y ou can access this example, and build it by compiling and loading the project called
Scribble_1.dev (inside the Scribble 1 subdirectory). Below is a screenshot of our Hello World
window. Notice that there is a system menu in the upper right, but no other Ul elements have
been added. Also notice that pressing the “Keyboard” button, or selecting Keyboard from the
system menu brings up the soft keyboard.

12

Hello Warld Hello Warld

[mth [abc [cat [2D |

5 |y =z |+
=

1 =

B|.|E|[lans
TRIG JCALE JorTH] vAR JEXE
(AT (AT
Screenshots from our Hello_World application.

User Interface

The Message Function

The ClassPad receives User input through the M essage function. Signals are sent to this
function when user input isreceived. These signals are then processed, and the program will
then take the appropriate course of action.

The M essage function is a member of CPModuleWindow, and should be overridden to include
any Ul signals your application may send. Thetypical construction is asfollows:

SI GNED Your Modul eW ndow: : Message(const PegMessage &Mesgq)

{
swi t ch(Mesg. wType)
case | DL:
/1 Put what to do when a nessage with IDl is received here
br eak;
case | D2:
/1 \What to do when a nessage with ID2 is received.
br eak;
/1 Qther signals are nanaged by the base cl asses
def aul t:
return CPModul eW ndow: : Message(Mesq) ;
return O;
}

The message ID’ s are really just numbers, and should be defined somewhere in your project.
When you create Ul elements of your project, you will assign an ID to each element, it is these
ID’ s that will then be processed by the M essage function.

13

Menus
Now that we have a message function to handle User input, we need to define some areas where

auser can provide that input.
Menu Description

Y ou first must define amenu description. Thiswill define the drop down menus at the top of the
screen. Our menu will have the form:

PegMenuDescri pti onM. Scri bbl eMai nMenu[] = {
{“I'ten2”, CMN_NO_ID, 0, AF_ENABLED, SubMenul },
{“Iteml”, CWMN_NO_ID, 0, AF_ENABLED, SubMenu2 },
{“r, CW_NO I D, 0, 0, 0}

Asyou can see, this declaration contains alist of PegMenuDescriptionML items. Each structure
contains a few important parameters. The first parameter is the name of the menu item, and what
will be displayed on the screen. Thethird parameter isthe ID of the signal that will be sent to
the message function. (Sincethisisonly the top menu and the actual menu items will be
contained in sub menus, we have left these as zero.) The fifth parameter is the name of the sub-
menu that will be opened by clicking on thisitem. We would then have to define descriptions
for these sub-menus aswell. For example:

PegMenuDescri pti onM. SubMenul[] =

= {
{“ Choi ce2”, CMN_NO I b, I D_CHO CEL1, AF_ENABLED, NULL 1},
{" Choi cel”, CMN_NO I D, | D_CHO CE2, AF_ENABLED, NULL 1},
{“r, CVN_NO _I b, 0, 0, 0}

The second parameter deals with multi-language support. In this example the valueis set to
CMN_NO _ID. This meansthat regardless of the current language of the ClassPad, the menus
will awaysread “Item1” and “Item2”. If you are creating menus with common phrases (such as
“Copy”, “Paste”, “Cut”, etc) you can use the ClassPad defined language IDs found in
CPLangDatabase.h to support multiple languages. For example, this menu would read “ Cut” and
“Paste” in the current language:

PegMenuDescri pti onM. SubMenul[] = {

]
{NULL, CMN_MENU ED CUT, | D_CUT, AF_ENABLED, NULL },
{NULL, CMN_MENU_ED_PASTE, | D _PASTE, AF_ENABLED, NULL },
[« CWN_NO I D, 0, 0, 0}

We will use some of these common language 1Ds when creating the menus in Scribble.
The fourth parameter isastyleflag. For our purposes, it will work fine as the value given above.

Note: All menus should be terminated by a blank menu item (the third item in the above
description.)

14

The GetMenuDescriptionML Function

Finally, once we have defined our menus, we must add the GetM enuDescriptionM L () function
to our module. This function should return a pointer to the topmost menu. For example:

PegMenuDescri pti onM.* Your Modul eW ndow: : Get MenuDescri pti onM.()
return Scribbl eMai nMenu;

Once we have done this, we have the working menu system shown below. Selecting “Choicel”
will send signal ID_CHOICEL to the Message() function, and “ Choice2” will send
ID_CHOICE2.

bl Item2
Chaicel 3,
ChaiceZ

Screenshot of the menu described above

The Toolbar

We can add items to the toolbar in asimilar fashion. To do so, we first need to override the
AddUI () member function of CPModuleWindow. Thisfunction is called whenever the Ul area
of the MainFrame needs to be redrawn. Adding buttonsto this areais quite easy; atypical
method is shown below:

voi d Scri bbl eW ndow: : AddUl ()
{

PegText Button* b = new PegTextButton(1,1, "Buttonl", BUTTON1_ID,
AF_ENABLED| TT_COPY) ;
m _ui - >AddTool bar But t on(b) ;

PegText Button* b2 = new PegTextButton(35,1, "Button2", BUTTON2_ID,
AF_ENABLED]| TT_COPY) ;
m_ui - >AddTool bar But t on(b2) ;

In this example, we have chosen to add “text buttons’, buttons that contain text. The
PegTextButton constructor’ sfirst two arguments are the coordinates of the upper left corner of
the button (relative to the top left corner of the window.) The third argument is the name that
will be displayed on the button. The fourth argument isthe ID that will be sent to the message
function when the button isclicked. Again, the fifth argument is a style flag that we'll leave
alone.

Once we have defined our buttons, we add them to the Ul window by using
m_ui->AddT oolbar Button(b). m_ui is a protected member of CPModuleWindow, and isa
pointer to the Ul window. A screenshot of thistoolbar is shown below.

15

| % Iteml Item?z |
Buttonl |Buttonz B
Scr eenshot of the toolbar described above

It isalso possible to add bitmap buttons. Y ou can create them using the following method:

PegRect rr = GetTool barButtonRect();
PegBi t mapButton *b3 = new PegBi t mapButton(rr, &bPegBi t map, BUTTON | D) ;

Notice the PegBitmapButton constructor takes three parameters: a rectangle that corresponds to
the size, a pointer to a PegBitmap and the ID that will be sent to the message function. (Thereis
afourth parameter, which is a style flag, but we' Il use the default.)

Thereisatool included with the SDK that will convert monochrome bitmaps into PegBitmaps.
They can then be used to create such buttons. Refer to the section on Scribble 2 for an example
of creating atoolbar with PegBitmapButtons.

Pen or Keypad Input

In addition to menus and toolbars, we also need to handle user input from the pen and keyboard.

Pen Input

CPWindow has virtual member functions to handle pen input. These are:

voi d OnLButt onDown(const PegPoint & p); /1 Called when the pen is first put
/1 down on the screen.

voi d OnLButtonUp(const PegPoint & p); /1 Called when the pen is picked up

/1 off the screen.

/1 Called when the pen is noved

/1

around on the screen.

voi d OnPoi nt er Move(const PegPoint & p);

The PegPoint p isthe location of the pen when the event isreceived. Simply override these
functionsin your subclass of CPModuleWindow. Then, whenever a pen event takes placein
that window, the system will call the appropriate function. These functions are window-specific,
so you will have to override these functions for each window in which you wish to handle pen
input.

Keyboard Input

The CPWindow function for handling character input is:

voi d OnChar (const PegMessage & Mesg); // Called when keyboard input is
/1 received

Again, you will need to override this function in order to handle keyboard input. This function
will be called when a key is pressed on the ClassPad’ s hard or soft keyboard.

For ASCII input, M esg.iData will contain the character code for the key pressed.

16

Addition of Ul Elements: Scribble_2
Using the techniques outlined above, we will add the following capabilities to our example Add-
in:

1. AddaM essage function to handle signals from the menu and toolbar

2. Adda“Draw” menu. Thismenu will contain asingleitem “Clear” which will clear the
screen

3. Add abutton to the toolbar. Thiswill also Clear the screen
4. Add the capability of handling pen input so that a point will be drawn in the window
whenever the user touches the pen to the screen, or moves the pen around on the screen.

Y ou can build this stage of the application by compiling and loading the Scribble 2.dev project
(inside the Scribble_2 subdirectory). Steps 1 and 2 are done almost exactly as shown above.

Adding a Bitmap Button to the Toolbar

In order to add a bitmap button, we must first create a PegBitmap object. We first begin with a
19x13 pixel monochrome bitmap. (Oursis called Clear.bmp, and islocated in
Scribble_2\bitmaps).

To convert Clear Bitmap.bmp into a.cpp file you can use the BMP Converter tool located
under the Tools menu of the SDK.

x
— BMP Converter
Input BMP IEIearEitmap.bmp
Output C++ File IEIearBitmap.cpp _I
Corvert Cancel |

A screenshot of the BMP Converter tool.

Notice that the .cpp file defines the PegBitmap as gbClear Bitmap. We can now usethisto
create atoolbar button in Scribble.cpp:

extern PegBitmap gbd earBit map;

voi d Scri bbl eW ndow: : AddUI ()
{
PegRect rr = GetTool barButtonRect();

PegBi t mapButton *b3 = new PegBi t mapButton(rr, &bC ear Bi t map, | DB_CLEAR) ;
m_ui - >AddTool bar But t on(b3) ;

}

Notice that we have given the button and the Clear menu item the same ID: IDB_CLEAR.
(They both perform the same task.)

17

Adding a Child Window to the ScribbleWindow

For reasons that will become more obvious in the next section when we discuss scrolling, it is
desirable to have al the points drawn within a child window of the ScribbleWindow. We design
a separate class called DrawWindow that will keep track of the points drawn with the pointer.
The class declaration is shown below:

cl ass Draww ndow. public CPW ndow
pr ot ect ed:

PegPoi nt* m pointlist;
i nt m_poi ntcount;

public:
Dr awW ndow(PegRect rect);
~Dr awW ndow() ;

/1l Overwitten function to handl e pointer events
virtual void OnPoi nt er Move(const PegPoint & p);

/1 These are functions specific to this add-in,
/1 in charge of drawing the points

voi d DrawPoi nt (const PegPoint & p);

voi d SavePoi nt (const PegPoint & p);

void Draw();

voi d d earPoints();

Asyou can see, this class contains a pointer to an array where the coordinates of all the points
that have been drawn are stored. The class also keeps track of the total number of points.

Notice that we have only overridden OnPointer M ove in order to draw the points. Thisis
because OnPointer M oveis called immediately after an OnL ButtonDown, so we don’t need to
overrideit.

Once we have this class in place, we must add it as a child to the ScribbleWindow class. We
first add a pointer to the window as a member of ScribbleWindow, and add the following to the
ScribbleWindow constructor:

rect. wBottom-= 1;

rect.wlop += 1;

mw n = new DrawW ndow(rect);
Add(m wi n);

(Here m_win isthe pointer to the DrawWindow.) We use the command Add to add this second
window as a child of thefirst. We make the DrawWindow almost the same size as the full
application.

Finally, once we have added a child window to our ScribbleWindow, we must modify the
Draw() function .
}/oi d Scri bbl eW ndow: : Draw()

Begi nDraw() ;

Dr awFr ane() ;
DrawChi | dren() ;
EndDr aw() ;

18

}

The addition of the DrawChildren() function ensuresthat all child windows will be drawn when
the parent is re-drawn. Screenshots of our example are shown below.

[Draw [Draw
[| I (BC S
1!
SERY
Hello l
[
R
e
c:...:':l
7
] i

Writing drawn with “ Scribble” is cleared when the“ Clear” button is pressed.

Multiple Windows

Adding a Second Window

As stated in the introduction, the ClassPad is capable of displaying two applications windows at
the same time. Adding a second window is done almost identically as creating the first window.
The window should be a subclass of CPM oduleWindow, should be constructed to be the
appropriate size, and should then be loaded into the MainFrame. The MainFrame will take care
of re-sizing the primary window. The following codeistypical for adding a new window to the
bottom of the screen.

PegRect Chil dRect = nmw >Bott omAppRect angl e();
CPModul eW ndow *swi n = new CPModul eW ndow(Chi | dRect, 0, 0, nw)
my >Set Bot t oMW ndow(swi n) ;

Here, mw is the pointer to the CPMainFrame where the window will be loaded. (The
CPModuleWindow function GetM ainFrame() can be useful when adding a new window from
within an existing window. It returns a pointer to the MainFrame in which the current window is
loaded.)

Invoking Applications

When you use one window to launch another, it is usually a good choice to make the first
window the "Invoking Application” of the second. When awindow is closed, itsinvoking
application will replace it (if one exists.) Remember that “main” windows (set with

SetM ainWindow) cannot be closed from the CP menu (at the upper left corner of the screen.)

19

In order to set an invoking application, we just have to modify the constructor of the new
window. Recall that the constructor for CPModuleéWindow has the following form:

CPMbdul eW ndow(PegRect rect, CPMdul eW ndow* i nvoki ng_wi ndow,
CPDocurent * doc, CPMai nFrame* frane)

Up until now, we have always set the second parameter to zero. If instead we enter a pointer to
the invoking window as the second parameter, the invoking window will replace the new
window when itis closed. For an example, see the section below where we apply these concepts
to the Scribble Application.

Scrolling

Adding scroll barsto your window is very simple, provided your window is structured correctly.
In general, the following line needs to be added to the constructor for the window:

Set Scr ol | Mbde(WM _AUTOSCROLL) ;

The parameter is one of several: WSM_AUTOSCROL L adds automatic horizontal and vertical
scrollbars. WSM_AUTOVSCROLL and WSM_AUTOHSCROLL add only vertical and
horizontal scrollbars respectively.

Once you have added the above line to your window’ s constructor, scrollbars will be added to
the window so that all of the window’ s children can be viewed. Thisiswhy we created a second
draw window in the Scribble Application. By making the DrawWindow a child of the
ScribbleWindow, scrollbars will automatically be added to the ScribbleWindow so that the
entirety of its child DrawWindow can be viewed. (By making the DrawWindow the size of afull
application, scrollbars will only be necessary when the window is re-sized in order to make room
for another window.)

If we had drawn the points within the ScribbleWindow, scrollbars would not be added to the
window because the points are not considered children of the ScribbleWindow.

Message Boxes

Adding message boxes to your application is a ssimple two-step process. Message boxes have
their own class. PegMessageWindow. There are three constructors; we will only use one here:

PegMessageW ndow(const PegRect &Rect, const PEGCHAR *Title, const PEGCHAR
*Message=NULL, WORD wsStyl e=MN OK| FF_RAI SED, WORD wsSt yl e2=NULL, PegBit nap
*pl con=NULL, PegThing *Owaner =NULL)

The first two parameters specify the dialog’ s position (rectangle) and itstitle. Thethird
parameter is the message you want to display. The forth and fifth parameters are style flags,
we'll use the default asusual. The sixth parameter is anicon for the message box, and the
seventh specifies whom this message box reports to. We will not use these features.

In general, once you have created a message box, the second step isto call the function
Execute() which will launch the dialog. The return value of the Execute() function will be the

20

ID of the button clicked. Thisisuseful for determining which option the user has selected.
These techniques will be illustrated below.

Important: Note that PegM essageBoxes are self-deleting objects. They delete themselves after
they are closed. Thus, you must make sure that the dialog is created with the new operator, but
you do not have to worry about deleting the object. Smply call the Execute() function;
everything else will be taken care of.

The Status Bar

Thus far, we have not addressed the status area located at the bottom of the application screen.
Thisareais often useful for displaying extrainformation in your application. Adding text to this
areais easy to do because of a pointer to the area CPM oduleWindow::m_status bar.

Thisis aprotected variable, but you can gain accessto it through the function: GetStatusBar ()
which returns a variable of type PegStatusBar*.

It isthen easy to add text with the function SetTextField() which adds text to the already created
status bar. (The bar is created when you first create your module window.) To do so, passin
two arguments: the first argument should be “1” denoting the one (and only) text field in the
status bar. The second argument should be the text you would like to add.

For example, to add the text “ Status: OK” to the status bar, atypical construction is as follows:
Your Modul eW ndow: : Set St at usBar ()

{
/1l Get a pointer to the status bar

PegSt at usBar* bar = Get StatusBar () ;

/] Set the text
bar - >Set TextFi el d(1, “Status: OK');

}

Then, of course we would have to call this function from a convenient location to change the
status bar’ s text.

We will use asimilar construction in our example. Now that we know how to create multiple
windows, we will use the status bar to display which window we are in.

Adding a New Window, Dialog, and Scrollbars: Scribble 3
Using the above techniques, we will add the following functionality to the Scribble Application:

1. Theability to launch a second window that will display the current number of pointsin the
DrawWindow.

2. Make the ScribbleWindow the invoking window for the new window. So the
ScribbleWindow will replace it whenit is closed.

3. Turn scrolling on in the ScribbleWindow, so scrollbars will be added when the window is
resized.

21

4. Create a status bar for each window which displays which window currently has focus, and
the current position (full screen, top window, or bottom window) of the window.

5. Add adialog box that will pop up when the “Clear” button is pressed. Thisdialog will ask if
the user wants to clear al the points. If they select “OK”, the points will be cleared.

Y ou can build this version of Scribble by opening the Scribble 3.dev project located inside the
Scribble_3 subdirectory. An explanation of important changes is given below.

Creating the Count Window

The second window should again be sub-classed from CPModuleWindow. For now, the only
function necessary is Draw(). Notice that the constructor for the CounterWindow has a
parameter for the Invoking window:

Count er W ndow(PegRect rect, CPMdul eW ndow* i nvoki ng_ wi ndow,
CPMai nFrane* frane) :CPModul eWndow(rect, invoking wi ndow, 0, frame) {}

Launching the Count Window

In order to launch the count window, we added a second tool bar button to the Scribble Window,
and modified the M essage() function in order to handle this button. We then added a new
function OnCount() which actually creates the CounterWindow:

voi d Scri bbl eW ndow: : OnCount ()

{
CPMai nFrane * nf = Get Mai nFrame();

PegRect Chil dRect = nf->BottomAppRect angl e();
Count er W ndow* cwi n = new Count er W ndow(Chi | dRect, this, nf);
nf - >Set Bot t oMW ndow(cwi n) ;

}

Notice that thisis set as the invoking window; we have made the ScribbleWindow the invoking
application for this window.

Drawing the Count Window

The only function that is necessary for this new window at the moment is Draw(). The syntax is
below. Notice the use of GetlnvokingWindow() as away to get a pointer to the
ScribbleWindow. Also note that we have added a new function CountPoints() to
ScribbleWindow which returns the total number of points on screen.

voi d Count er Wndow. : Draw()

Begi nDraw() ;
Dr awFr ane() ;

/1 Get the nunber of points fromthe DrawW ndow
Scri bbl eW ndow* i nvoker = (Scribbl eWndow) Getlnvoki ngW ndow);
i nt nunber _of points = invoker->Count Poi nts();

/1 Convert nunber of points to string format

unsi gned char count[5];
CP_I nt ToStri ng(nunber _of _points, count);

22

/1 Draw a string displaying the nunber of points.

CPString str = "Number of Points: "

str += (char*) count;

PegPoi nt p = {10, 10};

PegCol or col or = BLACK;

DrawText R(p, str. Text (), col or, PegText Thi ng:: Get Basi cFont ());

} EndDr aw() ;

Also note that the point count will only be current right after launching the window. Thereisno
functionality to update the count as more points are drawn yet. In the above function we have
used the utility class CPString. For more information on utility classes, see the SDK Reference
Guide

Adding Scrollbars

We have added the SetScrollIM ode(WSM_AUTOVSCROLL) to the constructor of the
ScribbleWindow. Notice that when the window is re-sized, you can scroll to see all points that
have been drawn.

Adding the Status Bar

We have added the function SetScribbleStatusBar () to the scribble window and

SetCounter StatusBar () to the counter window to set the status bar. These functions are very
similar —they both update the status bar to reflect the current screen state. Since each
CPModuleWindow derived class has a status bar, both classes need their own function to set
their status bar. The code for SetScribbleStatusBar () looks like this:

voi d Scri bbl eW ndow: : Set Scri bbl eSt at usBar ()
{
CPMai nFranme *nf = Get Mai nFrane();
PegSt at usBar *bar = Get StatusBar () ;
if (nf && bar) {
FraneState state = nf->State();
CPString status = "Scribble: ";
i f(nf->KeypadOn())
status += "Keypad Open";
el se

{

switch (state)
{
case FS_SI NGLE_APP:
status += "Full Screen";
br eak;

case FS_TWO APPS:
if (mReal == nf->TopAppRectangle())
status += "Top W ndow';
el se
status += "Bottom W ndow';
br eak;

}
bar - >Set Text Fi el d(1, st at us);

23

Here we have used the CPMainFrame functions TopAppActive(), State(), and KeypadOn() to
determine the state of the window. Then, we use GetStatusBar () and SetTextField() to set the
text in the status bar. (Again we have used the CPString utility class. For more information, see
the SDK Reference Guide.)

To avoid calling these functions explicitly from their classes’ Draw() functions, we create a user
defined message, PM_SCRIBBLE_SIZE_CHANGED, that is pushed to the M essageQueue
anytime our windows are resized. The reason for doing this as opposed to just calling our
function on the PM_SIZE message is that the window state is not updated until after the
windows have been resized. Therefore, if wetry to call status bar functions when the PM_SIZE
message is received, it will be too soon. Here isthe code in the message function where we
intercept the PM_SIZE message and send our own PM_SCRIBBLE_SIZE CHANGED

message:
SI GNED Scri bbl eW ndow: : Message(const PegMessage &Wesq)

swi t ch(Mesg. wType)

case PM SI ZE:
CPModul eW ndow. : Message(Mesq) ;
{

PegMessage nsg(this, PM SCRI BBLE_SI ZE CHANGED) ;
MessageQueue() - >Push(nsg) ;

br eak;

}
Message type PM_SCRIBBLE_SIZE_CHANGED isdefined in Scribble.h.

Pushing this message will by itself will not accomplish anything. We must then catch the
PM_SCRIBBLE_SIZE CHANGED message in ScribbleWindow’ s and CoutnerWindow’ s
M essage() functions, and then call the class function to update the status bar. Hereisthe
portion of ScribbleWindow’s M essage() function that does this:

SI GNED Scri bbl eW ndow: : Message(const PegMessage &MWesq)

swi t ch(Mesg. wType)
{

case PM SCRI BBLE_SI ZE_CHANGED:
Set Scri bbl eSt at usBar () ;
br eak;

Screenshots of the new Scribble Application are shown below. Notice that the status bar at the
bottom displays the current window position.

24

|1 Lz |||1 Ltz | | W Draw
[Oft1] 3| (e X | [| 3

AVAN

Murmber of Points: 134

[m[afifofc]a], |#[x|slx|]
loa [In | F 7 [2[5]["[=]
= | &= | =t [4[5[&][=
S EENIEN RHEEE
L |1 [fe].e]lzns
TRIG I:FILE'OF'TN VAR |EXE
Scribble: Full Screen] Scribble: Keypad Open gm Scribble: Top Window]

Scrollbars, a status bar, and a new Counter Window added to the Scribble Application

Adding a Message Box
We have added the following function to ScribblewWindow:

WORD Scri bbl eW ndow: : T ear Al | Popup()

PegMessageW ndow *pDl g = new PegMessageW ndow(Get Lang(CVN_MENU_ED DEF) ,
Get Lang(CMN_CLEARALL_SURE), MWV OK] MV CANCEL| FF_RAI SED) ;
return pD g->Execute();
}

Notice that we define the title and message using the GetLang() function and an 1D from
CPLangDatabase.h. Thiswill cause the message box to display the correct message depending
on what the current language of the ClassPad is. Also notice that the last line calls the Execute()
function, which will return the ID of the button clicked when the dialog is closed.

We use thisfact in the ScribbleWindow::OnClear () function, which is called when the “Clear”
button is pressed. We have modified it to include the following:

voi d Scri bbl eW ndow: : OnCl ear ()
{
/1 Popup a dialog
/1 Only clear points it OKis clicked
i f(C earAll Popup()==IDB_OK)
{

m wi n->C ear Poi nts();
Redr aw() ;

}

Notice that the Clear button now first pops up the dialog box. Because the return value of the
Clear AllPopup () function isthe ID of the button clicked, we proceed to clear the points only if
the “OK” buttonisclicked. A screenshot of the dialog is shown below.

25

|1 Ltz
[0ttt | b

Clear All

Are wou sure?

B,

Scribble: Full Screen]
A modal dialog box

Interaction Between Windows

A logical next step isto have the Point Count update as we draw more points, instead of having
to launch the Count Window every time. In order to do this, we need to explore the concept of
Documents.

Documents and Windows

Until now, we have left the third parameter in our CPModuleWindow’ s constructor equal to
zero. Thisisthe parameter that specifies a document for the window. Typically, adocument is
an object that contains all the datafor a particular window. We have not needed to use one yet,
because our application is simple enough that we can keep track of our data within our window.
However, in more complicated applications, the use of adocument is an excellent way to keep
the data (document) separate from the display of the data (window.)

In order to create a document for our window, we need to subclass CPDocument that has a
constructor of the form:

CPDocurent (CPMai nFrane * frane)

In our class declaration, we also need to override the following pure virtual functions. (They will
not affect our program, but we must have them in order to avoid errors.)

virtual WORD DocType() { return O; }
virtual WORD Version() { return 1; }

Finally, we must link our Module to the newly created document. Thisis accomplished with the
third parameter of our modul€’ s constructor:

Your Modul eW ndow(PegRect rect, CPMdul eW ndow i nvoki ng_w ndow,
CPDocurnent *doc, CPMai nFrame * frane)
CPModul eW ndow(rect, invoki ng_w ndow, doc,frane) {}

26

We can then access the document using the GetDocument() member function of
CPModuleWindow.

Documents and Changing Data

Documents are not only useful as a container for your window’ s data, they also allow for live
updating of windows. This interaction comes through two similarly named functions:
OnDataChanged (avirtual member of CPModuleWindow), and OnChangedData (a member
of CPDocument.)

Whenever data is changed within a document, one should call the OnChangedData function.
Once thisfunction is called, the MainFrame will then call the OnDataChanged function for the
window which points to the changed document. For clarification, it is the developer’s
responsibility to:

1. Cal OnChangedData (a member of the document) whenever datais changed in the
document, and you would like to update the corresponding windows.

2. Override OnDataChanged (a member of the CPModuleWindow) to provide instructions
on how to update the window when data has been changed.

The MainFrame will take care of the rest.

Linking Windows Together

The Document-window structure is such that one document can contain data used in many
different windows. Further, when you call OnChangedData(), the MainFrame will call
OnDataChanged() for every window which is linked to that particular document. Thisallows
changes made in one window to be viewed in a second, and vice versa.

Live Updating in the Scribble Application: Scribble 4
Using the above technique, we will add the following capability to the Scribble application:
1. Create anew document class, and link it to both the ScribbleWindow, and the
CounterWindow.

2. Cal OnChangedData() and override OnDataChanged() so the CounterWindow will
update the current point count whenever a point is drawn, or the screen is cleared.

Creating the ScribbleDocument class

Because we have neglected documents until now, our project could use a bit of re-structuring in
order to accommodate them. First, we need to create our document class. The class declaration
is shown below:

cl ass Scri bbl eDocunent: public CPDocumnent

pr ot ect ed:

27

int mcounter;
PegPoint * mpointlist;

public:

// Standard constructor for a docunent, docunment nust
/1 be | oaded into the mainfrane

Scri bbl eDocunent (CPMai nFrame * frame);

virtual ~Scribbl eDocunent ();

/1 Functions used to get a point information
CPString GetCountAsString();
PegPoi nt GetPoint(int i) {return mpointlist[i];}

/1 Functions to nanage the Point |ist
voi d SavePoi nt (const PegPoint & p);
voi d O earPoints();

/1 Functions to nanage the counter
inline int GetCount() {return mcounter;}

/1 These are pure virtual functions that nmust be overwritten
virtual WORD DocType();
virtual WORD Version();

b

Notice that the document has completely taken over all management of the points. To do this,
we have moved the members m_counter, and m_pointlist here from the DrawWindow, and we
have also moved the functions SavePoint and Clear Points.

Once we have created the document, we must modify the constructors of the ScribbleWindow,
and CounterWindow to accommodate a document. The updated constructors now have one extra
parameter—the 3" parameter now points to the document.

Scri bbl eW ndow PegRect rect, Scribbl eDocunent * doc, CPMai nFrame* frane)
: CPMbdul eW ndow(r ect, 0, doc, framne)

Count er W ndow(PegRect rect, CPMbdul eW ndow* i nvoki ng_wi ndow,
Scri bbl eDocunent * doc, CPMai nFrane* frane)
: CPModul eW ndow(r ect , i nvoki ng_w ndow, doc, frane)

Finally, in pegmain.cpp, we must create the document, and use it in constructing our windows.
(Alternatively, we could use the CPM oduleWindow’ s function SetDocument() to link the
document to each respective window instead of modifying the constructors.)

We will also want to have access to the document from within the DrawWindow (the document
must be updated whenever a point isdrawn or cleared.) Because DrawWindow is a CPWindow,
not a CPModuleWindow, it can't be linked to the document as above. Instead, we will simply
include a pointer to the document as a protected member of DrawWindow.

Restructuring the DrawWindow

Previously, the DrawWindow had been in charge of keeping track of the points. Because we
want the document to do this instead, the DrawWindow needs to be changed.

28

Theresult of al this shuffling is a cleaner DrawWindow class that is only in charge of drawing
the points. Below isthe modified DrawWindow class declaration.

cl ass Draww ndow:. public CPW ndow

pr ot ect ed:
// Data abstracted into Docunent cl ass
Scri bbl eDocunent * m doc;

public:
/1 Constructor takes a wi ndow rectangle and a pointer to the docunent
Dr awW ndow(PegRect rect, Scribbl eDocunment * doc);

//Overwritten function to Draw Scri bbl e Data
virtual void Draw();

/1 Overwritten function to handl e pointer events
virtual void OnPoi nt er Move(const PegPoint & p);

/1l These are functions specific to this add-in,
/1 in charge of draw ng the points
voi d DrawPoi nt (const PegPoint & p);

}s

Allowing for Live Updates

Now, in order to allow for live updates, we need to call OnChangedData whenever datain the
document changes. We choose to call this function from within the functions OnPointer M ove
(when apoint is added) and OnClear (when the screenis cleared.) Notice we don’'t have to
override OnChangedData, we simply need to cal it. It will then call OnDataChanged for our
windows. The OnClear function which now contains OnChangedData is shown below:

voi d Scri bbl eW ndow: : Ond ear ()

/1 Clear Points only if OKis selected fromthe dial og
i f(C earAll Popup()==IDB_OK)

{
Scri bbl eDocunent * sdoc = (Scri bbl eDocunent*) Get Docunent () ;
sdoc->C ear Poi nts();
Redr aw() ;
/1 The docunment has changed, call OnChangedDat a.
/1 This will update all affected w ndows
/1 by calling OnDat aChanged for each one.
sdoc- >OnChangedDat a(t hi s) ;
}

}

Finally, we must override OnDataChanged() for the CounterWindow, since we need to provide
specific instructions about what to do when the document has changed. Since the
CounterWindow retrieves the current point count whenever it draws itself, al we need isthe
function shown below:

voi d Count er W ndow. : OnDat aChanged()

{
I nval idate(nCient);

29

Draw() ;

This simply tells the CounterWindow to re-draw itself whenever the point count changes. This
in turn will update the display accordingly.

The Scribble Application is now completely capable of live updating. Y ou can build the
example by loading the Scribble_4.dev project (located inside the Scribble_4 subdirectory).

Saving/Restoring Information

The last feature we will implement is the ability to save and restore states of the application.
Thiswill be useful in implementing Undo/Redo and Save/L oad capability.

Undo/Redo

Because some form of the undo mechanism is used in nearly all applications, there is a good deal
of functionality already set up to support it.

Therelevant classis CPUNndoT hing; it contains most of the necessary functions to implement an
undo/redo action. Y ou will have to specify the steps your application will take to actually
perform the undo.

The MainFrame carries a pointer to a CPUndoThing. This points to the object that performed
the last undoable action. Thus, in order to implement undo functionality, you must make your
window (or some other piece of your application) a subclass of CPUndoT hing.

Secondly, you must call the function ActivateUndo() whenever you complete an action that is
undoable. ActivateUndo() alerts the mainframe that this should now be the current undo thing.

Once you have done this, you will need to override the following member functions of
CPUndoThing:

1. Undo() — Thisfunction is called to perform the actual undo. Y ou should include
instructions about what steps are needed to perform your undo.

2. Release() — Thisfunction is called by the Main Frame when the object is no longer
the current undo thing. Thus, if possible, you should free up some memory that is
used to store the undo state, since the action is no longer undoable.

We will implement undo/redo functionality in the Scribble application at the end of this section

Saving Files

In order to save filesinto the ClassPad’ s MCS file system, we make use of the CPWriteM CSFile
class.

30

Creating a CPWriteMCSFile Object

In order to write data, we first need to create a CPWriteM CSFile object. This object hasa
constructor of the following form:

CPWiteMCSFi | e(const char* nanme, const char* path=NULL, UCHAR t ype=0)

name and path are ssimply strings that refer to the file's desired name, and folder. Thetype

parameter specifies the type of file to be saved. We will always save our variables astype
IMU_MCS TypeMem. These variables show up astype “MEM” in the variable manager.

Writing Data to the File

Once you have created the file, ssmply utilize one of the many “write” members of the base class
CPWriteFile to write the data to thefile.

Writelnt(int i) —writes an int to the file.

WriteDouble(double xx) —writes a double to the file.

WriteFloat(float xx) —writes afloat to thefile.

WriteBytes (void* buffer, int nBytes) -- Writes n bytes from the buffer to thefile.

Unfortunately there is one extra step before your datais written to the file. Thisis dueto the fact
that the CPWriteM CSFileis not created with a specific size, thus no memory is allocated for
thefilewhen it is created. However, writing the data using the functions above allows the file to
keep track of itssize. Once everything has been written, call the Realize() function to alocate
the appropriate memory for thefile.

Then, once you have called the Realize() function, you must write the data again. Thistime,
since the memory has been allocated, it will actually be written to your file.
The Header for MEM files

Files of type IMU_MCS _TypeM em should also include a header that contains their application
type, and datatype. Thisheader should be the first thing written, and the first thing read out.

To construct and write your header, use the following syntax:
CPMemFileHeader header = CPMemFileHeader (“ application name” ,“ data type”);
header .write(f); // f isthe CPWriteM CSFile to which you are writing

Example Code

An example of how to write an the integer “count” into afile called “test” is shown below:
/] Create the CPWiteMCSFile and the header

CPWiteMCSFile f(“test”,”main”, | MJ MCS TypeMem

CPMenFi | eHeader header (“test app”, “test data”);

/!l Wite integer the first tine to conpute the size of the file

header.wite(f);
f.Witelnt(count);

31

/1 Call the Realize function to allocate the appropriate menmory for the file
f.Realize();

/!l Wite the data for the second tinme. This tine it is witten to menory

header. Wite(f);
f.Witelnt(count);

This two-step process is always necessary whenever writing datato an MCSfile.

Opening Files

In order to load files in from the MCS file system, we make use of the CPReadM CSFile class.
Creating the CPReadMCSFile Object

The constructor for a CPReadM CSFile isidentical to that for a CPWriteM CSFile:

CPWriteM CSFile(const char* name, const char* path=NULL ,UCHAR type=0)

Here name and path are the filename, and folder location of the file, and type is the data type of
thefile. Asbefore, wewill dwaysuseatypeof IMU_MCS TypeMem.

Reading in Data from the File

Once you have created your CPReadM CSFile object, smply use one of the following functions
to read in the appropriate data type:

int ReadInt()

double ReadDouble&()

float ReadFloat()

void ReadBytes (void* buffer, int nBytes) //Read n bytes into the buffer

Reading in the Header for MEM Files

Data should be read in the same order that it was written. For MEM files, the header isthe first
thing that is written, so we should accordingly read it first.

As before, you need to create an object of type CPMemFileHeader, and then use its member
function Read which takes a CPReadM CSFile asits argument. See the code of the Scribble
Application for an example.

Adding Save/Load and Undo to the Example: Scribble 5

Using the above techniques, we will now add the following capability to the Scribble
Application:

1. A simple Undo/Redo function, which will allow the user to undo the last string of points
drawn.

32

2. The ability to save and load files in the application

Implementing the Undo in the Scribble Document

Our undo/redo function will behave asfollows. Whenever the user puts the pen down to draw a
new string of points, we will save a copy of the point list and point count. These copies will then
be restored if the user selects“Undo”. We will not allow any other actions (such as clearing the
points) to be undoable.

The Scribble Document should be the object that actually performs the undo. Thus, we have to
make a few changes to the document. The document will need to carry the current list of points
and a count, aswell asan undo list of pointsand acount. Sincethisisgetting alittle
complicated, it is probably a good time to create a class that abstracts our array of points. This
way we will only have to keep up with the current point list and the undo point list in the
ScribbleDocument. We call this new class ScribblePointArray and define it as:

cl ass Scri bbl ePoi nt Array

pr ot ect ed:
int mcounter;
PegPoi nt* m pointlist;

public:
/1 constructor and destructor
Scri bbl ePoi nt Array();
~Scri bbl ePoi nt Array();

/1 Size returns the nunber of points

int Size() { return mcounter; }

/1 Add a new point

voi d Add(const PegPoint& p);

/1 clear all points and free up nenory
void dear();

/1 array operator. Get point at index
PegPoi nt operator[](int index) const;

/1 copy "points"

Scri bbl ePoi nt Array& operat or=(const Scri bbl ePoi nt Array& points);
/1 Swap ny data and the data from "points"
voi d Swap(Scri bbl ePoi nt Array& points);

/1 Wite data to a file

void Wite(CPWiteFile &f);

/!l Read data froma file

voi d Read(CPReadFile &f);

s

Secondly, we must actually implement the functions that will save the undo state, restore the
undo state, and release the undo state. The modified class declaration is shown below.

class Scri bbl eDocunent: public CPDocunent
pr ot ect ed:

Scri bbl ePoi nt Array m pointlist;

/1l Cass for the Undo State

Scri bbl ePoi nt Array m undo_pointlist;
publi c:

/1 Functions to nanage the Undo/ Redo state
voi d SetUndoState();

33

voi d RestoreUndoState();
voi d Rel easeUndoSt at e();

The SetUndoState function will copy the current point count, and point list into the “undo”
variables.

The RestoreUndoState function will swap the “undo state members’ with the current state
members.

The ReleaseUndoState function will reset the undo state variables to their initial values—
freeing up any memory taken up by the undo state. We will call this function whenever the
points are cleared from the document. Because we don’'t want the “Clear” action to be undoable,
we should release the undo state whenever this action is performed.

All of these functions are available in the final version of ScribbleDocument.cpp. These tasks
are quite straightforward, so we will not list the functions here.

Implementing the Undo in the Scribble Window

Now that we have the desired functionality in the Document, we need to implement the
Undo/Redo mechanism from within our application. First, we must subclass our Scribble
Window from CPUNndoThing. We must also override the Undo() and Release() functions of
CPUNdoT hing which provide instructions on how to actually perform the undo. Finaly, we will
add a function that saves the current undo state. Portions of the new class declaration are shown
below:

cl ass Scri bbl eWndow. public CPModul eW ndow, public CPUndoThi ng
pr ot ect ed:
Dr awW ndow* m w n;

publi c:

/1 Undo Functions
virtual void Undo();
virtual void Rel ease();
voi d SaveUndoSt at e();

}

As stated above, all of the work of the Undo will take place within the document. The scribble
window is designed simply to handle the user input, pass relevant instructions on to the
document, and redraw itself when something changes. This should be evident from the simple
implementation of the functions shown below:

voi d Scri bbl eW ndow: : Undo()

{
Scri bbl eDocunent * doc = (Scribbl eDocunent*) Get Docunent ();

/! Restore Undo State, and update all dependent w ndows
doc- >Rest or eUndoSt at e() ;
doc- >OnChangedDbDat a(t hi s) ;

/! Redraw t he wi ndow
I nval idate(nCient);

Draw() ;

voi d Scri bbl eW ndow: : Rel ease()

Scri bbl eDocunent * doc = (Scri bbl eDocunent*) Get Docunent();
doc- >Rel easeUndoSt ate() ;

Activating the Undo

We must now select when we want to activate the undo. The only undoable action in our
specification is drawing points. Thus, we want to activate the undo whenever the user places the
pen down. We've created afunction to save the undo state and activate the undo, and called it
SaveUndoState(). The function is shown below:

voi d Scri bbl eW ndow: : SaveUndoSt at e()
{

/1 Save the current state in case of Undo.
Scri bbl eDocunent * doc = (Scri bbl eDocunent *) Get Docunent () ;
doc- >Set UndoSt at e() ;

/1 Notify the Mainfrane that this wi ndow possesses the current undoabl e
/1 action
Act i vat eUndo() ;

}
Notice the call to ActivateUndo() at the end of the function. This call must be made whenever

you would like an action to be undoable. The function makes this the current undo thing. Thus,
the ScribbleWindow::Undo() will be called when the user performs an Undo.

Finally, we want to set the undo state whenever the user puts the pen down to draw a new string
of points. Thus, inside the DrawWindow class, we have overridden OnL ButtonDown and call
the SetUndoState() function from within it. The code is shown below:

voi d Dr awW ndow. : OnLBut t onDown(const PegPoi nt &p)
{
/1 Save the Undo state as the pen is first put down.
/1 Undo will then renove the l|atest scribble
/1 (points drawn since the | ast PenDown)
Scri bbl eW ndow * parent =

(Scribbl eWndow *) Get Mai nFrame() - >Mai nW ndow() ;
par ent - >Set UndoSt at e() ;

Adding the Undo/Redo Menu Item
Finally, we must include a menu item that performs the undo/redo.

PegMenuDescri pti onM. Scri bbl eEdi t Menu[] = {
DECLARE_MENU_| TEM CMN_MENU_UNDOREDQ, FWW_UNDO)
{"", CMWN.NO ID, 0, O, NULL }

i

35

Because the Undo/Redo signal is used frequently, we can ssmply add a menu item using the code
above: DECLARE_MENU _ITEM(CMN_MENU_UNDOREDO, FWM_UNDO). Thisadds
a“Undo/Redo” item to the menu, and assigns it the proper I1D.

After completing this step, the Undo/Redo mechanism is complete. Screenshots are shown at the
end of this section.

Adding the Saving/Loading Functionality to Scribble

Since the ScribbleDocument completely describes the state of our application, in order to save
the file, we must write the document to afile, and read the document when loading in afile.

For our save/load Ul, we will make use of aclass called StorageManager. Thisisadialog box
that displays all the files of a particular type in a specified folder. The constructor is shown
below:

St or ageManager : : St or ageManager (CPStri ng* fil ename, CPString* pathnane,
ActionStates action, UCHAR type)

filename and pathname are strings denoting the name and location of your desired file. You do
not need to worry about these values when creating your storage manager, but make sure that
you have valid CPString objects that you can passin.

The third parameter designates whether you will be saving or loading afile. Passin
STORAGE_ACTION_SAVE or STORAGE_ACTION_OPEN accordingly.

The fourth parameter specifies the type of files to be shown. (Again, we will always use
IMU MCS TypeMem.)

Because the storage manager is adialog box, we must then call the Execute() function to bring it
up. Remember that the dialog box will return avalue that corresponds to the button pressed
when it is closed, and that the dialog will delete itself after calling the Execute() function. For
the storage manager, we should be expecting the following button ID’s:

IDB_CANCEL, IDB_STORAGE_SAVE, IDB_STORAGE_OPEN.

Writing the Save and Load Functions

We have added functions named OnSave() and OnL oad() to the ScribbleWindow, and have
added message ID’ s and menu items as expected. Then, the function implementation uses the
storage manager to quickly implement saving and loading. The OnL oad function is listed
below:

voi d Scri bbl eW ndow: : OnLoad()

{
CPString fol der, nane;

/1 Create the storage manager wi ndow, and call the Execute function to
/1 bring it up
/1 The filenane and fol dername are stored in the string variables "name"
/1 and "folder" after the dialog
/1 is closed.
St or ageManager *manager = new St or ageManager (&nane, &f ol der,
STORAGE_ACTI ON_CPEN, | MJ_MCS TypeMen) ;
int ret = nanager->Execute();

36

/1 Open the file only if the open button is pressed, and both the
/1 nane and folder strings are not enpty.
if (ret ==IDB_STORAGE_OPEN && nane. Length() && folder.Length())

{
CPReadMCSFi | e f(name. Text (), fol der. Text (), | MJ MCS TypeMem ;
/1 Check that the file exists, and is valid
if (f.FileExists() & & f.lsNotError())
{
Scri bbl eDocunent * doc = (Scribbl eDocunent *) Get Docunent () ;
/1 Tell the docunent to read in the data
doc- >Read(f);
/1 Notify all dependent wi ndows that the docunent has
/1 changed
doc- >OnChangedDbDat a(t hi s) ;
el se
f. ErrorPopup();
}

/! Redraw the entire wi ndow with the new points
I nval i date(nCient);
Draw();
SaveUndoSt at e() ;
}

Notice that the name and folder strings are set by actions the user performs while the dialog is
open. After the user clicks“Open”, the function checks that they have selected afolder and a
file, and then creates a CPReadM CSFile based on these values. (Additional checking is doneto
make sure that the fileis valid with the functions f.FileExists(), and f.IsNotError ()).

Read and Write Methods for the Document

The above function then calls the Read function of the document, which will read in the header
and then call our new ScribblePointArray’s Read function. (This function’s definition is shown
below.) When creating these functions, make sure that you read and write the data in the same
order.

voi d Scri bbl eDocunent : : Read(CPReadFi | e &f)
{

/1 Read in the header

CPMEMFi | eHeader header (SCRI BBLE_APP_NAME, SCRI BBLE DATA NAME) ;
header . Read(f);

m poi ntlist. Read(f);

Set UndoSt at e() ;

}
voi d Scri bbl ePoi nt Array: : Read(CPReadFi | e &f)
{

/1 Clear out the existing points
Cear();

/1 Read in the point count

m counter = f. Readlnt();

if (mcounter) {
/1l Create a new point |ist of the appropriate size
m poi ntlist = new PegPoi nt[mcounter];

37

/! Read in the points

PegPoi nt p;

for (int 1i=0; ii< mcounter & f.IsSNotError(); ii++)
{

p. x=f. Readl nt ();
p. y=f. Readl nt (),
mpointlist[ii] = p;

—

/ If an error happened while reading, then the data is probably bad
if (f.ErrorFlag()) {
Cear();

—_———

}
}

The procedure for saving thefile is quite similar to that shown above, however we must
remember to complete the two step write process that was described in the earlier section.
Below is ScribbleDocument::Write function.

voi d Scri bbl eDocunent:: Wite(CPWiteFile &f)

{
/! Wite once to conpute size
Wi teData(f)
f.Realize();
/] Wite a second tine
/1l this time it is actually witten to the allocated nenory
if(f.is_open())
WiteData(f);
}

(The WriteData function goes through the details of writing the point count, and point list
similar to how the Read function readsin thisdata.) All these functions can be viewed in their
entirety inside the Scribble 5.dev project (located inside the Scribble 5 subdirectory.

This completes our development of Scribble. You can access all the completed features by
loading Scribble 5.dev, building the project, and loading it onto your ClassPad. Screenshots of
this last phase of the project are shown below.

¥ File Draw - File Edit Draw

[EOft] b

Scribble: Full Screen] Scribble: Full Screen]

38

Performing an Undo

File Search
ES] [E5]|
E - rmain

File Search

3] [l

O rnain

Dt zrnain

Saving and L oading thefile “ test”

More Information

The techniques presented in this document are intended to only be a brief introduction to
application development for the ClassPad. The ClassPad 300 SDK Programming Guide
provides explanations and examples on how to use most of the classesin the SDK. The
ClassPad 300 SDK Reference Guide includes full reference on classes and functions available
for Add-in development. Please see these documents for more information on programming
Add-in applications for the ClassPad 300.

Advanced Topics

Upload Add-in Tool

If you grow impatient of browsing to your .cpa and confirming the overwrite each time you
upload an Add-in to your ClassPad, then try “Upload Add-in” from the tools menu instead of
“Launch Add-in Installer”.

Upload Add-in will automatically start the transfer of your project’s .cpafile to the ClassPad.
Make sure that before starting Load Add-in that your ClassPad is waiting to receive an Add-in
Application. When transferring the add-in, any previous add-ins with the same name on the
ClassPad will be overwritten without a warning message. Thistool assumesthat you are
developing an add-in and will be sending an add-in with the same name to the ClassPad

regularly.

39

Compiler and Linker

Dev-C++ automatically creates a makefile for a project to assist in compilation and linking.
Dev-C++ assumes that the user isusing GNU’s GCC to compile and link a program and creates
the makefile using GCC'’ s syntax. Even though the SDK does use GCC to create a windows
executable, the compiler that it is uses to compile a ClassPad add-in is SHC.EXE. Since
SHC.EXE does not use the same syntax as GCC, awrapper is used to convert GCC syntax into
SHC syntax.

In Dev-C++, open the Tools->Compiler Options M enu and click on the Programs tab. You
will seethat gcc_shcgec.exeislisted as the compiler program instead of gcc.exe for the Default
Compiler Set. Thisisthe wrapper that will take the commands Dev-C++ sends and convert them
into the correct syntax for both GCC.EXE and SHC.EXE.

Compiler Options 5' Compiler Options ll
Compiler | Settings: | Directories el Settings | Directaries | Programs |

“Y'ou may want to change the programs filenames that are used in Dev-C++ [for Cigniplar 2t EAtig e

example when uzing a cross compiler] IDefauIt compiler j #l al G—.{)l
o Igc:c_shcgcc:.exe Dgl v &dd the following commands when calling compiler:

-cpu=sh3 -MOLOGO -RTTI=0FF -MOEX ;I
g+ |gcc_shcgcc.e:-ce Dgl _I
-
make : |make.exe Qﬂl . _
==l v &dd these commands ta the linker command ling
. = -
odb: odbene 3| “FO=library -NOLO -NOM =
windres : |occ_shoooo.exe D35|
I -]
dllwrap : Igcc_shcgcc.e:-ce Dgl
; I 3 Enables a delay in milizeconds if make complains
gprof ; Igcc_shcgcc:.exe D;gl Compile Dielay 0 1 ahout the makefiles time stamp.
akefile generation:
’7|7 Usge fast but imperfect dependency generation |

<g= Default | X Cancel | ? Help | = Default | X Cancel | ? Help |

If you click on the compile tab, you will find a place to send extra arguments to the compiler.
The arguments that are listed by default are all in SHC syntax. Any extra options that you wish
to send to the SHC compiler must be sent in SHC.EXE’s syntax. You can seealist of SHC's
options by going to the command line and typing “shc”. If you need to include an option that
takes alist of arguments, take care not put spaces between the arguments. For example, the
syntax for defines are -DEF=DEFINE1,DEFINE2,DEFINE3 not -DEF=DEFINE1,
DEFINEZ2, DEFINES.

Any options passed to the compiler that are not valid SHC syntax will be sent to the GCC
compiler. If there are any options where GCC and SHC share the same syntax, SHC will take
precedence.

If you wish to send extra arguments to the compiler, be aware that adding extra options to the
compiler under Compiler Options will save these optionsfor all projects. To add commandsto
the compiler for the current project, go to Project->Project Options and then click on the
parameters tab.

For example, let’s say that you want to send a define of GCC to gcc.exe and SHC to shc.exe. To
add thisto the current project, click on the Project Menu then Project Options. Thiswill bring up

40

the Project Options Dialog. Then click on the Parameterstab. In the text box under Compiler
and C++ compiler typein “-DEF=SHC -DGCC”. Thiswill send the -DEF=SHC command to

shc.exe and the -DGCC command to gcc.

The wrapper also calls the SHC linker, OPTLNK.EXE, and the GCC linker, LD.EXE. Options
can be sent to the linker in the same fashion that they are sent to the compiler. Once again, make
sure that you use OPTLNK.EXE’s syntax to send commands to OPTLINK and LD.EXE’s

syntax to send commandsto LD.

After running the linker, the wrapper prepares the add-in that will be installed on the ClassPad.
This includes setting the header of the add-in (via setheader .exe), adding the name of the add-in
(viaputname.exe) and compressing the add-in (viacompress.exe). If you'd like to see exactly
what the wrapper does, click on the Compile Log tab after building an add-in. All commands
that Dev-C++ sends to the wrapper are followed by the actual call to shc.exe then the call to

gce.exe.

=
mele el Buskd O i s

F- U pheinzabon

| o | Xeowce | Pue |

Using Assembly

The wrapper also alowsthe use of simple
assembly filesin aproject. Not all assembly
is supported. If the wrapper is not correctly
building an add-in that uses assembly, try
building the project from the command line
(see the next section).

All assembly files used in a Dev-C++ project
must have the extension .src and will only be
compiled with SHC. Building of assembly
filesisnot supported via the wrapper for
GCC. If you choose to use assembly
through the IDE, there is some additional
setup that must be done.

Changing Compiler Sets

If SHC seemsto compile correctly while GCC
isgiving errors, you can choose to only build an
add-in and not a Windows executable. To do
this, click on the Project menu then Project
Options. On the Project Options dialog click on
Compiler. At the top you will notice adrop
down list labeled “Compiler”. Click on thisand
choose “Add-in Only”. Thiswill call a
different wrapper that will only compile using
shc.exe. If you wish to compile only a Windows
executable, that option is also available.

x|

Project Options
General Y Compiler | Parameters | Directories | Build Opti... | Makefile | Yersion info |
Praject files: . .
E-E) Hello Warld File: options:

Build priority: |1 aoo 3,

i . v Include in compilation

i Hellobwindow. h

Peeg?'nailr:]c?: v Include in linking

_____ PEGMN.N HEF [~ | Compil fle as G+

v Ovenide build command

T

e azzembly. src:

----- HelloWWindow. cpp

Ok I x LCancel | ? Help |

Dev-C++ creates a makefile that contains a compile statement for each .c/.cpp file in a project.
If afile does not have a .cpp/.c extension then by default there will be no rulesto make thefilein
the makefile. To change this open the Projet->Project Options Menu and click on the Files tab.

41

Hereyou will see alist of al filesin your project. To include the assembly filein the
compilation of your project, select it and check “Include in compilation” and “Includein
linking”. The “Override this command” checkbox is automatically selected and “<override this
command>" appears in the text box. If you wish to compile the file with the default options that
are sent to the compiler, just delete all the text from the textbox. However, if your build requires
more options then you can enter the command line call with the arguments needed to the
ClassPad assembly compiler, ashsm.exe, in this textbox.

Be aware that if you include assembly in your program GCC will not attempt to compileit. You
can still build a ClassPad add-in, but cannot build a Windows executable.

Building From the Command Line

If you do not want to use the wrapper, you can build a ClassPad add-in from the command line.
Here are the steps that you must follow:

1. Compileall sourcefiles. Thefirst thing that the wrapper doesisto compile all of your
source filesinto object files. For C/C++ code the compiler SHC.EXE isused. Hereisan
example of acommand that would compile the file Test.cpp:

C.\PRQJECT _DI R> shc. exe -OB="out putdir\Test.o0" -I1="SDK PATH\ cp_i ncl ude"
-cpu=sh3 -NOLOGO - RTTI =OFF - NOEX "Test.cpp"

If you have any assembly filesin your project you must compile them using ASM SH.EXE.
Hereis an example command line call to compile the assembly file Test.src:

C.\PRQJECT_DI R> ASMSH. EXE -O="outputdir\test.o" -1="SDK PATH cp_i ncl ude”
"test.src"

If you plan on using assembly in your add-in, it is recommended that you build using the
command line. While some simple assembly can be made to work with the wrapper, not all
assembly files will work.

2. Link all of your object files. The next step after compilation isto link all of your object files
with thetool OPTLNK.EXE. Thefirst thing you need to do is create a command file that lists
all of the object filesin your project. Each object file should be on its own line and be preceded
with “input=". For example, a project that had the source files Test1.cpp, Test2.cpp and
Test3.cpp would have a command file that looked like:

i nput =" out putdi r\ Test 1.
i nput =" out put di r\ Test 2.
i nput =" out putdir\ Test 3.

[eeoNe]

Name this file objects.sub and passit to the linker like this:

C.\PRQJECT_DI R>opt | nk. exe -SU="obj ects.sub" -output=aplmain.lib -FO=library
- NOLO - NOM

3. Link your library filewith ClassPad object filesand libraries. Next you need to create
an .rld file from your .lib by linking with the ClassPad object and library files. The wrapper

42

creates and uses a makefile to do this. Thereisatemplate for this makefile called
MakeCPA _template.mak in your SDK’sBIN directory. Copy thisfile to your project location
and open it in atext editor.

There are only two lines that you will have to change in this makefile: the location of your SDK
and the location of your output directory. When setting these directories, make sure that your
paths either do not have spaces or that you use the short path name. The placeto edit is clearly
marked by comments in the makefile:

BHBHBHBHEHBHHHHBHBHBH B H BB R R B B H B H R R R R AR
EDI T HERE

RHHABHBHABH A H BB H B B R R R R R R R R R
HHBHBHBHBEHEHH R HBHBHBH B H BB R BB H B H R R R R A R

The ROOT of your SDK installation

#("c:\programfil es\ CASI O Cl assPad 300 SDK" by default)

SDK= C: \ PROGRA~1\ CASI O CLASSP~1

The output directory where you want the .RLD and . MAP files created
QUT_DI R=C: \ pr oj \ CPAddi ns\ HELLOW-1\ QUTPUT~1

BHHABHBHHBH A H BB H BB B R R R R R R R R R
BHABHBHHBH BB HHAH A AR A R R R R A AR R R R AR R

Once you have successfully edited the makfile, call it from the command line with make:

C:\ PRQJECT_OQUTPUT DI R> make —f MakeCPA. mak
Thiswill create the .RLD file and .MAP filein your specified output directory.
Note: If you get any L2310 Warnings, you can safely ignore them.

4. Set the header and icon for the Add-in. Next you must set your Add-in’s header and icon.
Thisis done using the tool SETHEADER.EXE in the SDK\BIN directory. The output is
a.CPA file that can be named anything you like. In this example we will name it “Test. CPA”:

C.\ PRQJECT_QUTPUT_DI R\ > set header "ADDI NAPL.r|d" "Test.cpa" -vp0100 -vl 1000 -
n2 -pA -o -bl"Yourlcon. bnp”

5. Set the Name of the Add-in. In this step you set the name that will appear on the ClassPad
Launcher for your add-in. Thistime we use the tool PUTNAME.EXE in the SDK\BIN
directory. We send the executable the .CPA from the previous step and atext string indicating
the name of the Add-in:

C.\PRQJECT_QUTPUT_DI R> put nane. exe -p0 -wp "Test.cpa" "My Test"

6. Renameyour Add-in and run CPADATAMAKE.EXE. Thisstep will prepare your add-in
for installation on the ClassPad. The command CPADATAMAKE.EXE sets up thefile
ADDINAPA.BIN, and then appends your add-in to it. Because CPADATAMAKE.EXE expects
your file to be named ADDINAPL.BIN, you must rename your .CPA file. The following
commands will rename “ Test.cpa’ and call CFCADATAMAKE.EXE:

C.\ PROJECT_QUTPUT_DI R >ren Test.cpa ADDI NAPL. BI N

43

C:\ PROJECT_QUTPUT_DI R\ >CPADATANMAKE. EXE
Thiswill rename ADDINAPL.BIN to ADDINAPA.BIN.

7. Compressthe Add-in. Thefinal step isto compress the add-in for transfer to the ClassPad.
To compress the add-in use COMPRESS.EXE as follows:

C.\ PRQJECT_QUTPUT_DI R\ > COWPRESS. EXE -r ADDI NAPA. BI N

Thiswill create the compressed file ADDINAPA.BI_. Renamethisfile back to Test.cpaand
you' re done!

C.\ PROJECT_QUTPUT_DI R > ren ADDI NAPA. Bl _ Test. cpa

Debugging in Dev-C++
Dev-C++ GDB Front-end

The Windows executabl e that the wrapper creates is a debug build by default. Y ou can use Dev-
C++ asafront end to the GNU debugger gdb.exe to debug your project.

"™ Dey-C++ 4.9.8.10 - [Scribble] - Scribble.dev -0l x|

File Edit Zearch ‘iew Project Execube Debug Tools CWS Window Help

=R L E = S EIE T T)
I [JHew inzert <@ Toggle 0] Gota “I jl j‘
Pmiectl Claszes Debug | Counterafindow. cpp I
if (mf->KeypadOni)) =]
status += "Eevypad Open':
else
{
switch [(state)
{
case F3_SINGLE LPP:
] status += "Full Screen™; J
break;

case F3 TWO APP3:
if imf->Tophpphotive ()]

-
[I
1| | »

EE Eompilerl IE F!esnurcesl |:ﬂ:|] Compile Log Qf Debug ||§ Firnd Hesultsl Elosel

IDebug | Backtrace | Cutput |

@ Meat Step < Continue Qﬁ Debug @ Addw atch
@ Step Into bg Fiun to Cursor 3 Stop Execution ﬁ Bemove watch
[511 [[Insert |71 Lines in file 4

An active debugging session. Notice the breakpoint set in the editor and the debug window at the bottom of
the screen.

To add breakpoints to your project, ssimply open afile then click in the gutter on the line where
you wish to add a breakpoint. Once you have added all of the breakpoints you wish to add, click
on the Debug button in the toolbar to start the debugging session.

When the debug session begins, the debug window will appear at the bottom of the screen. Once
your program hits the breakpoint you can use this window to step over, step into, continue, run to
cursor or stop the execution of the debugger.

Once the debugging session has begun, if you try to add or remove a breakpoint you will get an
error message saying that a breakpoint cannot be added while the debugger is running. To pause
the debugger without stopping it, bring up the console window that opened with the ClassPad
GUI. With the console window having focus press Ctrl-C. Thiswill pause the debugger and
allow you to add or remove breakpoints. When you are ready for the debugger to begin again,
click the continue button in the debug window.

Printf Debugging

Not only can you use the console window that opens with your ClassPad executable to pause the
debugger, but you can also use it to debug by printing to standard out. Since the ClassPad
doesn’t have printf or cout, you must make sure that any calls to these functions are only
compiled by gcc. To do this, surround them with #ifdef WIN32 #endif macros. For example:

int main(int argc, char** argv)
{
int x, z=0;
X = z+10;
#i fdef WN32
printf(“%\n”, x);
#endi f
return O,

The WIN32 define is sent to gcc when compiling, but is not sent to shc. This allows you to add
anything that you want only gcc to compile in an #ifdef.

Debugging on The ClassPad
At the present time there are no advanced debugging tools available to debug on the ClassPad

directly. There are, however, a couple of ways to debug using “printf-style” debugging.
Message Boxes

The most straightforward way to debug is with pop-up message boxes. Creating a message box
isavery simple process: create a peg rectangle, create a new instance of PegM essageWindow,
and execute the dialog.

To make the process easier, you can create a debug function that takes your debug string and
displaysit in amessage box:
voi d DebugPopUp(CPString nsg)

PegRect rr = {5,100, 140, 150};

PegMessageW ndow *nsg = new PegMessageW ndow(rr, "debug", nsQ);
nmsg- >Execut e() ;

45

}
Then to output a debug string ssimply call DebugPopUp passing in your string.

| W Search

4B [F] ¥

Fage 5/5 Gl
DebugPopUp(“test1”);

Status Bar

The status bar can aso be used as a debugging tool. The mgjor difference between using pop-
ups and the status bar is that the status bar will not pause the program. Thiscan be a
disadvantage when you have several messages being replaced before they can beread. If you are
echoing several messages and want to read them all, pop-ups are probably the better choice.

To use the status bar create afunction like this:

voi d Set StatusBar (CPString str)

PegSt at usBar* bar = Get StatusBar();
bar - >Set Text Fi el d(1, str);

}

When you would like to print debug output to the status bar, just call the function with your
debug string.

MCS Variables

A final debugging option isto create MCS variable(s) with different values depending on what
code your program executes. Like before, you should create a function to simplify the
debugging process:

voi d Set MCSVar (word val)
{

OBCD dat ;

word si ze;

Cal _setn_OBC(val, &dat);

size = sizeof (OBCD);

BMCSCr eat eVari abl e("mai n", "debug", | MJ MCS TypeReal, size, (UCHAR*)&dat);

46

At places where you would like to update the variable just call SetMCSVar() with the desired
value. After the program has run, you can check the variable manager to see the final value of
your variable. This method has the disadvantage of not immediately showing the debug outpui.

But if you do not want to pause your program with pop-ups and cannot use the status bar, thisis
agood option.

47

	T
	ClassPad 300 SDK Environment
	Dev-C++
	Using Dev-C++

	Compiling and loading an add-in
	Changing Compiler Sets
	Compiling
	Loading

	Programming an Example Add-in Application
	Architecture
	The MainFrame
	Module Windows
	Constructing
	Drawing
	Invalidating
	PegAppInitialize

	Hello World Program: Scribble_1

	User Interface
	The Message Function
	Menus
	Menu Description
	The GetMenuDescriptionML Function

	The Toolbar
	Pen or Keypad Input
	Pen Input
	Keyboard Input

	Addition of UI Elements: Scribble_2
	Adding a Bitmap Button to the Toolbar
	Adding a Child Window to the ScribbleWindow

	Multiple Windows
	Adding a Second Window
	Invoking Applications
	Scrolling
	Message Boxes
	The Status Bar
	Adding a New Window, Dialog, and Scrollbars: Scribble_3
	Creating the Count Window
	Launching the Count Window
	Drawing the Count Window
	Adding Scrollbars
	Adding the Status Bar
	Adding a Message Box

	Interaction Between Windows
	Documents and Windows
	virtual WORD DocType() { return 0; }

	Documents and Changing Data
	Linking Windows Together

	Live Updating in the Scribble Application: Scribble_4
	Creating the ScribbleDocument class
	Restructuring the DrawWindow
	Allowing for Live Updates

	Saving/Restoring Information
	Undo/Redo
	Saving Files
	Creating a CPWriteMCSFile Object
	Writing Data to the File
	The Header for MEM files
	Example Code

	Opening Files
	Creating the CPReadMCSFile Object
	Reading in Data from the File
	Reading in the Header for MEM Files

	Adding Save/Load and Undo to the Example: Scribble_5
	Implementing the Undo in the Scribble Document
	Implementing the Undo in the Scribble Window
	Activating the Undo
	Adding the Undo/Redo Menu Item
	Adding the Saving/Loading Functionality to Scribble
	Writing the Save and Load Functions
	Read and Write Methods for the Document

	More Information
	Advanced Topics
	Upload Add-in Tool
	Compiler and Linker
	Changing Compiler Sets

	Using Assembly
	Building From the Command Line
	Debugging in Dev-C++
	Dev-C++ GDB Front-end
	Printf Debugging

	Debugging on The ClassPad
	Message Boxes
	Status Bar
	MCS Variables

