ClassPad 300 SDK Programming Guide

ClassPad

Table of Contents:

Table of Contents: 2
I ntroduction 6
About this Document 6
About the SDK API 6
Portable Embedded GUI — PEG 7
Static PEG Objects 7
The PegPresentationM anager 7

The PegM essageQueue 7

The PegScreen 7
The PegThing 8
Traversing the Presentation Tree of PegThings 8
Adding to and Removing from the Tree 10
Changing a PegThing’'s Size or Location 11
PegThing Type and Attributes 12
PegThing Type 12
PegThing Object IDs 12
PegThing Signals 13
PegThing Status Flags 14
PegThing Style 15
Current Focus 17
Setting Focus 17
Capture and Release of the Pointer 18
PEG Data Types 18
Fundamental Data Types 18
PegPoint 18
PegRect 19
PegMessage 20
CPString 20
CPArray 20
CPList 21
Messages and Message Handling 23
PegM essages 23
Definition 23

Peg System Messages 24
User Defined Messages 26

Peg Signals 27
Handling M essages 28
M essage Flow and Routing 29
Peg Timers 30

Window and Screen Drawing

The WindowsExample Add-in

An Overview of Windowsin the WindowsExample

CPMainFrame

CPM odulewWindow

CPWindow

Windows in WindowsExample

Coordinates on the ClassPad

Drawing on the ClassPad

Overriding the Draw() Function

Invalidating and Drawing outside of the Draw() Method

Drawing and Invalidating in WindowsExample

Object Boundaries

mReal, mClient and PegRects

Using Object Boundaries in WindowsExample

Bounding Rectanglesin DrawText()

Bounding Rectangles in OnPointerMove()

Scrollbars

How Scrolling Works

Scrolling in WindowsExample

User Interfaces

Windows on the ClassPad

PegWindow and PegWindow Derived Windows

PegPresentationM anager

PegDecoratedWindow

CPMainFrame

CPM odul eWindow

CPTabbedWindow

PegNotebook

PegM essageWindow

PegProgresswWindow

CPFrameWindow and CPFrameWindow Derived Windows

SCWindow

SCWindowWithMode

M athWindow

AbstractM athwWindow

ScrollableM athWindow

TabArrowM athwindow

SlidingMathwWindow

TextMathwindow

Creating Ul in a CPM oduléWindow

Menus

Toolbars

31
31

31
31
31
31
31

33

35
36

37
37
38
38
40

40
40
41

45
45
46
46
47
48
49
51
52
53
53

55
56
56
55
58

59
59
61

Status Bar

Buttons

PegButton

PegTextButton

PegBitmapButton

PegCheckBox

PegRadioButton

CPDropDownButton

CPMultiButton

CPToggleButton

Text Controls

PegPrompt

PegString

CPPegString

PegTextBox

PegEditBox

CPEditBox

Other User Interface Controls

PegList

PegVertList / PegHorzList

PegComboBox

PegSpinButton

PegProgressBar

Using Floating-Point Values with the ClassPad
OBCD Data Structure

OBCD Flag

The Mantissa

The Exponent

Setting the Value of an OBCD

Performing Operations on OBCDs

Converting OBCDs

C++ Functions

CBCD Data Structure

Setting the Value of a CBCD

Performing Operationson CBCDs

Converting CBCDs

BCD Converter Tool

More | nformation

Strings and String Handling I n the ClassPad

62

63
63

66
67
68
69
70

71
71
72
73
74
75
76

77
77
77
78
80
81

83

83
83
85
85

86
89
90
91
91
91
92
92
92
93
94

ClassPad Character Set

94

CP_CHAR and PEGCHAR

97

CP_CHAR Functions

98

CPString

99

Constructors and Assignment

99

CPString Comparison

Useful String Functions

Buffer Ownership

String Conversions

Converting Between CPStrings and Supported C native data types

Converting Between CPStrings and BCDs

Multiple Language Support in the ClassPad

Message Number Enumeration

Language Arrays

Defining ExtensionGetL ang()

MCS — Memory Control System

MCS Overview and Structure

I nteracting with MCS via BIOS Functions

Creating/Deleting Variables and Folders

Changing a Variable’'s Name and Attributes

Moving/Copying and Finding a Variable

Changing a Folder’ s Name/Attributes

Searching for a Folder

Reading/Writing to MCS using the CPFile Class
Reading From MCS

Writing to MCS

CPFile Headers

More I nformation

100
100
102

102
102
103

105
106
106
107

109
109

111
111
113
114
116
117

117
118
120
122

125

Introduction

About this Document

The purpose of this document is to provide you with areference guide while
programming on the ClassPad 300. This document is not meant to be atutorial, or a
complete list of functions contained in the SDK. Please Refer to SDK Programming
Tutorial for atutorial on working from a*“Hello World” to a scribble program on the
ClassPad. And refer to the SDK Reference Guide for acomplete list of functions and
classesin the SDK.

About the SDK API

The ClassPad 300 SDK’ s application programming interface is C++. If you are
unfamiliar with C++, there are several tutorials on the Internet that can assist you. Bruce
Eckel provides digital copies of hisbook Thinking in C++ for free on hisweb site:
http://www.mindview.net/.

Keep in mind that the ClassPad is an embedded system and therefore does not support all
of the C/C++ standard library functions. If you are new to C++ it is suggested that you
first spend some time understanding the basics of the language before trying to write
ClassPad add-in applications.

http://www.mindview.net/

Portable Embedded GUI - PEG

The ClassPad’ s user interface classes are all based on the Portable Embedded GUI
system, or PEG. In this section we will give abroad overview of PEG. Thiswill include
adetailed look at the PegThing, the class on which all viewable objects are based. We
will also look at how PEG uses the PegPresentationM anager to store these viewable
componentsin memory. Finally, we will go over some fundamental data types that are
used in PEG, but not based on the PegThing.

Static PEG Objects

There are three global static objects in PEG that are very important in understanding how
all of PEG is connected. These three objects are:

static PegThi ng:: PegPresent ati onManager *Presentation();
static PegThi ng:: PegMessageQueue *MessageQueue();
static PegThi ng:: PegScreen *Screen();

We discuss each of these objectsin more detail below.

The PegPresentationManager

The PegPresentationManager keeps track of all of the windows and sub-objects present
on the display device. In addition, PegPresentationManager keeps track of which object
has the input focus (i.e. which object should receive user input such as keyboard input),
and which objects are ‘ontop’ of other objects. Since thereisno limit to the number of
windows, controls or other objects that may be present on the screen at one time, you can
probably imagine that this quickly becomes a complex task.

The PegMessageQueue

When a control such as a button or menu is pressed, it creates an event that places a
message in the PegM essageQueue. The PegM essageQueue is a simple encapsul ated
FIFO message queue with member functions for queue management. The messages
placed in PegM essageQueue are the driving force behind the graphical interface. These
messages contain notifications and commands that cause the graphical el ementsto
redraw themselves, remove themselves from the screen, resize themselves, or perform
any number of various other tasks. Messages can also be user-defined, allowing you to
send and receive anearly unlimited number of messages whose meaning is defined by
you. The PegMessageQueue is discussed in detail in the Messages portion of this
document.

The PegScreen

PegScreen is the PEG class that provides the drawing primitives used by the individual
PEG objects to draw themselves on the display device. PEG windows and controls never
directly manipulate video memory, but instead use the PegScreen member functions to
draw lines, text, bitmaps, etc. Most importantly, PegScreen provides a layer of isolation

between the video hardware and the rest of the PEG library, which isrequired to insure
that PEG is easily portable to any target environment.

The PegThing

The most important and fundamental classin the PEG library isthe PegThing. PegThing
is the base class from which all viewable PEG objects are derived. While you may never
create an instance of an actual PegThing in your application, it is very possible that you
will derive your own custom control types from PegThing. In any event, every window
and control you will use is based on PegThing, so you will be using the public functions
of PegThing often when programming with PEG.

Because of the importance of these public functions, we will go though most of them in
this section. We will also provide brief explanations of how and when to use the function.

Traversing the Presentation Tree of PegThings

When you add a new PegThing to the PegPresentationManager, you begin creating atree
of all viewable objects. Asmore objects are added, the tree begins to take shape with
relationships of parent, child and siblings. Take this possible example:

PegPresentation

Manager
PegWindow1 PegWindow?2
PegPromptl | | PegPrompt2 | | PegButton PegCheckBox

If we take the role of PegWindow1, our parent would be PegPresentationManager, our
sibling would be PegWindow?2 and our children would be PegPrompt1, PegPrompt2 and
PegButton.

Given this arrangement of PegThings, you could expect an arrangement something like
the following to be drawn to the screen:

PegPresentationM anager

PegWindowl

PegPrompt1

PegPrompt2

PegButton

PegWindow?2

PegCheckBox

PEG provides the following functions to access and traverse this tree structure:

PegThi ng* PegThi ng: : Parent (voi d);
PegThi ng* PegThing:: First(void);
PegThi ng* PegThi ng: : Next (voi d);
PegThi ng* PegThi ng: : Previ ous(void);

Their use can best be explained using a close up view of a portion of the previous tree
diagram:

Next ()

PegWindow1 »| PegWindow2
Previ ous()
First() TParent()
Previ ous()

Again, let’ stake the role of PegWindowl. First() would return the first child in our
linked list of children, PegPromptl. Parent(), although not drawn, would return the

PegPresentationManager. Next() would return PegWindow?2. Since all listsare
terminated withaNULL, Previous() would return NULL. So, if we wanted traverse all

of the children of an object, we could use the following code:
PegThi ng *pTest = Parent()->First(); // first child of ny parent
int iSiblings = 0;
/1l Since all lists are NULL term nated,
/1 we can | oop on while ptest!=NULL
whi | e(pTest)

{

if (pTest !'= this)
{

}
pTest = pTest->Next();

i Si blings++;

Adding to and Removing from the Tree
PEG provides two functions to add PegThings to the presentation tree:

voi d PegThi ng: : Add(PegThi ng *Who, BOOL bDraw = TRUE);
voi d PegThi ng: : AddToEnd(PegThi ng *Who, BOCL bDraw = TRUE);

Add() always adds the child to the beginning of the linked list of children. If you would
like to add to the end, use AddToEnd().

Let’slook at some example code and see what the tree it creates will look like:

PegRect Rect (10, 10, 40, 40);
PegW ndow *chi | d_wi ndow = new PegW ndow(Rect) ;
PegW ndow *par ent _w ndow = new PegW ndow(Rect + 50);

PegPronpt *pronptl = new PegPronpt (0, O, “Pronptl”);
PegPronpt *pronpt2 = new PegPronpt (0,30, “"Pronpt2”);

prent _w ndow >Add(chil d_w ndow) ;
chi I d_wi ndow >Add(pronpt 1) ;
chi | d_wi ndow >AddToEnd(pr onpt 2) ;

parent_window

child_window

promptl prompt2

There are also two functions to remove an object from the tree:

10

PegThi ng* PegThi ng: : Renove(PegThi ng *Who, BOOL bDraw = TRUE);
voi d Destroy(PegThi ng *Who);

The PegThing member function Remove() is used to detach an object from the object’s
parent. This removes the object from the tree, but does not remove the object from
memory. The PegThing member function Destroy() is similar to Remove(), athough
Destroy() both removes the object from the tree and del etes the object from memory.

Aslong as items belong to the PegPresentationManager, all memory will be freed
automatically. However, once you use Remove() to remove an object from the tree you
arein charge of deletingitsmemory.

Changing a PegThing’s Size or Location

PegThing has two member functions that deal with resizing or relocating itself. These
functions are:

virtual void Resize(PegRect Rect);
virtual void Center(PegThi ng *Who);

Any PEG object can resize itself or any other object at any time by calling the Resize()
function. The new screen coordinates for the objects are passed in the parameter Rect. If
you maintain or find a pointer to another object, you can also resize that object by calling
the same function. The following example illustrates this concept:

PegRect Rect (10, 10, 40, 40);
PegButton *MyButton = new PegTextButton(Rect, 0, “Hello0”);

. Il at any time, to resize MyButton:

Rect . Set (20, 20, 60, 60);
MyBut t on- >Resi ze(Rect) ;

If an object isvisiblewhen it isresized, it will automatically perform the necessary
invalidation and drawing. It is perfectly acceptable to resize an object that is not visible,
in fact in many casesthisisthe best timeto do it. Note that passing a rectangle of the
same size as your PegThing, but at different location will cause the Resize() function to
move your PegThing’ s without changing its size.

Center () will adjust the screen coordinates of Who such that Who is horizontally and
vertically centered over the client area of this. Who does not necessarily haveto be a
child of this, athough that is the most common case. The following example
demonstrates centering an object on the screen:

PegRect Rect;

Rect. Set (0, 0, 100, 100); // create 100x100 pi xel w ndow
PegW ndow *M/W n = new PegW ndow(Rect) ;
Presentation()->Center(MyWn); // center wi ndow on the screen
Presentation()->Add(MyWn); // make the wi ndow visible

11

PegThing Type and Attributes

PegThing Type
All PEG objects have amember variable called muType, which isalogical type

indicator. You can retrieve or set an object’s muType value by calling the Type()
functions:

UCHAR Type(void) { return nuType; }
void Type(UCHAR uSet) {nuType = uSet;}

Type() called with no arguments will return that PegThing’ s type, whereas Type() called
with aUCHAR will set the object’ stype.

This can be useful when you are searching your child object list for objects of a certain
type. Thisvalueis also useful when debugging since at times you may have a pointer to a
PegThing and wish to know exactly what type of PegThing the pointer points to. After
checking the muType member of a PegThing, you can safely upcast a PegThing pointer
to apointer to a specific PEG object type. The possible return values of the Type()
function are defined in the header file pegtypes.hpp. The following code fragment
illustrates one possible method of locating the status bar attached to a window:

PegThing *pTest = First(); // get pointer to first child object
whi | e(pTest) // search to the end of list if necessary

if (pTest->Type() == TYPE_STATUS BAR)

{
PegSt at usBar *pStat Bar = (PegStatusBar *) pTest;

/luse pStatBar to call menber functions or change attributes
break; // found the status bar, exit the | oop

pTest = pTest->Next(); // continue down the list of children

PegThing Object IDs

Another way to find a specific PegThing iswith its Object ID. Y ou can assigh each
PegThing a unique object ID value that can then be used to identify the object. When an
object sends a notification signal to a parent window, the object ID is contained in the
iData member of the notification message. If you do not give an object 1D to a PegThing,
then that PegThing will not send notification signals.

To get and set an object’s 1D, use the following functions:

WORD Id(void) {return mMd;}
void ld(WORD wid) {mMd = wid,;}

12

A few object ID values are reserved by PEG for proper operation of dialog boxes and
message windows. Therefore you should always begin your private control enumeration
with avalue of 1, so as not to overlap the reserved ID values. Valid user object IDsarein
the range between 1 and 999.

Y ou can locate a child object at any time using the object’s ID with the Find() function.
Find() will search the child list of the current object for an object with an ID value
matching the passed in value. An example of setting an Object’s ID and then using
Find() to retrieveit follows:

W ndowl: : Wndowl(...) : PegW ndow(..)
I d(I D_W NDOM) ;
}
PegW ndow *W ndow2: : Fi ndW ndowl(voi d)
{

}

return Presentation()->Find(lD WNDOM);

PegThing Signals

All PEG objects support abasic set of signals. PegThing provides storage for the object
ID, the signal mask, and member functions for modifying the signal mask. The signal
mask determines which signals a PegThing will recognize. The mask can be changed
with the following functions:

voi d Set Si ghal s(WORD wivask) ;
voi d Set Si gnal s(WORD wi d, WORD wivask)

The first function is used to identify which notification messages a signaling control
should send to its parent. The mask value should be created by using the SIGMASK
macro. This enables multiple signals to be enabled with one call to SetSignals, similar to
the object style flags.

The second function, with the extra argument, is used to both assign an object’s ID and
the associated signal mask. Remember that an object without an object ID, or an object
with an ID of 0, will not send signals.

Y ou can use the following functions to determine what signals are set for a given
PegThing:

WORD Cet Si gnal s(void) {return m\Si gnal Mask; }
BOOL CheckSendSi gnal (UCHAR uSi gnal)

GetSingals() will return the entire signal mask for a PegThing, whereas
CheckSendSignal() will check a PegThing for a specific signal.

Thefollowing isalist of al available signals:

13

PSF CLICKED Default button select notification

PSF FOCUS RECEIVED | Sent when the object receives input focus

PSF FOCUS LOST Sent when the object loses input focus

PSF TEXT SELECT Sent when the user selects all or a portion of atext object
PSF TEXT_EDIT Sent each time text object string is modified

PSF TEXT EDITDONE | Sent when atext object modification is complete

PSF CHECK ON Sent by check box and menu button when checked

PSF CHECK_ OFF Sent by check box and menu button when unchecked
PSF DOT ON Sent by radio button and menu button when selected
PSF DOT OFF Sent by radio button and menu button when unselected

PSF SCROLL CHANGE | Sent by non-client PegScroll derived objects

PSF SLIDER CHANGE | Sent by PegSlider derived objects

PSF SPIN_MORE Sent by PegSpinButton when up or right arrow is selected
PSF SPIN LESS Sent by PegSpinButton when down or |eft arrow selected
PSF LIST SELECT Sent by PegL.ist derived objects, including PegComboBox
PSF PAGE SELECT Sent by PegNotebook when a new page is selected
PSF_KEY_RECEIVED Sent when an input key that is not supported is received
PSF SIZED Sent when the object is moved or sized

PegThing Status Flags

All PEG objects have certain system status flags associated with them. The system status
flags are important to the correct operation of the library, but are generally not often
needed by the application software. PegThing maintains an object’ s system status flags,
and provides public functions that allow you to examine and/or modify the system status
flags for an object. These functions are:

BOOL Statusls(WORD wivask)

virtual void AddStatus(WORD wOrVal);
virtual void RenoveStatus(WORD wAndVal);
WORD GCet Status(void);

Stautsl () is used to test if a PegThing has a specific system flag set. Thelist of valid
system flags follows.

PSF VISIBLE The object is visible on the screen. Thisflag should not be
modified by the application level software.
PSF_ CURRENT This flag indicates that the object isin the current branch of

the display tree. If the object isaleaf object (i.e. it hasno
children) and it is current, then it is the object which will
receive keyboard input messages.

PSF_SELECTABLE Thisflag istested by PegPresentationManager to determine
if an object is enabled and allowed to receive input
messages. The application level software can modify this

flag.

14

PSF_SIZEABLE This flag determines whether or not an object can be
resized. The application level software can modify thisflag.

PSF MOVEABLE This flag determines whether or not an object can be moved.
The application level software can modify thisflag.
PSF_NONCLIENT Thisflag, when set, allows a child object to draw outside the

client area of its parent. The application level software can
modify thisflag after the object is constructed but before the
object is displayed.

PSF_ALWAYS ON_TOP | Thisflag insures that the object is always on top of its
siblings. The application level software can modify thisflag.

PSF_ACCEPTS FOCUS | Thisflag indicates that the object will become the receiver
of input events when selected. The application level
software can modify this flag, but normally thisis not
advised.

PSF_VIEWPORT Thisflag, when set, instructs PegPresentationM anager that
the object should be given a private screen viewport.

GetStatus() returns the status flag of the current PegThing.

AddStatus() can be used to modify an object’s mwStatus flags. AddStatus() will
logically OR the wMask parameter with the object’s mwStatus variable. Thisfunctionis
used often by the PEG foundation objects to modify the state of a visible window or
control, but israrely used by the application level software.

RemoveStatus() is the opposite of AddStatus(). RemoveStatus() can be used to clear
individual bits or a combination of bits in an object’s mwStatus variable. This function
will logically AND the complement of wMask with the object’ s mwStatus variable.

PegThing Style

All PEG objects also have a set of style flags associated with them. The style flags are
very important to you as a user of the library, in that these flags allow you to easily
modify many things related to how an object appears and functions. The style flags are
interpreted in different ways by different object types, and some style flags apply only
to certain types of objects. PegThing provides the following functions that will allow
you to read or modify an object’s style flags at any time:

void FranmeStyl e(WORD wstyl e);
WORD FraneStyl e(voi d);

virtual WORD Styl e(void);
virtual void Style(\WORD wStyle);

The FrameStyle() functions can be used to get or set the appearance of the frame for
most PegThing derived objects. The available styles are:

FF NONE No frame

FF THIN Thin black frame

15

| FF_THICK | Thick Frame

The Style() function is used to get or set the style flags for an object. Not all style flags

are supported by all classes.

Thefollowing isalist of general categories of PegThings, and what style flags they

support:

All PegThing Styles

FF_NONE
FF_THIN
FF_THICK

Text Control Styles

TJ RIGHT
TJ LEFT
TJ CENTER

Button Styles

BF_REPEAT
BF_SELECTED
BF_DOWNACTION
BF FULLBORDER

Menu Styles

BF_SEPARATOR
BF_CHECKABLE
BF_CHECKED
BF_DOTABLE
BF _DOTTED

Edit Styles

EF EDIT
EF_ WRAP

EF FULL_SELECT
EF CHARWRAP

Message Window Styles

MW_OK
MW_YES

MW _NO
MW_ABORT
MW_RETRY
MW _CANCEL

Notebook Style

NS TEXTTABS

Progress Bar Styles

PS SHOW VAL
PS RECESSED
PS LED

PS VERTICAL
PS PERCENT

Spin Button Style

SB_VERTICAL

Refer to the ClassPad 300 SDK Reference Guide for more details on these styles. In al

cases, the desired style flags can be logically ORed together to form one style parameter.

16

Current Focus

All PegThing based classes support the idea of gaining and losing focus. If aPegThing
has current focus, it means all key input is sent to that object. The user typically changes
the input focus by pressing the pen on an object. When an object gets the input focus it
getsaPM_CURRENT message and its PSF. CURRENT statusis set. All its parents up
the tree also become current. Y ou can detect if an object is a member of the input focus
branch of the presentation tree at any time by testing the PSF. CURRENT system status

flag:

i f (Statusls(PSF_CURRENT))

{
/1 this object is in the branch of the

/1 display tree that has input focus.

}

Just because an object is amember of the input focus tree does not mean the object isthe
end leaf of the input focus branch. Y ou can obtain a pointer to the final input object by
calling the PegPresentationM anager :: GetCurrentThing() function. This function will
return a pointer to the actual default input object, or NULL if no object has been selected
to recelve input events.

Setting Focus

Y ou can override the user’ s input selection and manually command
PegPresentationM anager to move the input focus at any time by calling:

voi d MoveFocusTree(PegThi ng *pThi ng);

When focus is moved from one PegThing to another, PM_NONCURRENT messages are
sent to objects that are no longer members of the input focus branch, and PM_CURRENT
messages are sent to objects that are members of the new input focus branch. The effect
isthat non-directed input messages will be sent to the newly designated input object.

When children are added to the presentation list, the newest child is always placed at the
beginning of an object’s children list. By default, the first child in a parent’slist isthe
child that hasfocus. This meansthat last child added to a PegThing will aways have
default focus (Add() always adds a child to the front of the sibling list). Since this may
not be the desired result, there are three functions that explicitly assign or test which child
has default focus:

virtual BOOL HasDef aul t Focus(void);
virtual PegThi ng* Get Def aul t Focus(voi d);
virtual void SetDefaul t Focus(PegThi ng* pThing);

HasDefaultFocus() testsif an object has default focus. GetDefaultFocus() returns the
PegThing that has default focus. SetDefaultFocus() assigns a PegThing default focus.

17

Capture and Release of the Pointer

When an object gains focus, it also gains focus of the pointer. Once you gain focus of the
pointer you may wish to continue to receive events based on the pointer even if your
object no longer has focus. The following two functions allow you to accomplish this:

voi d Capt urePoi nter(void);
voi d Rel easePoi nter(void);

These functions can be useful when dragging an object on the screen. Y ou could, for
example, call CapturePointer () on pen down and ReleasePointer () on pen up of a
certain object. In this case, even if the pen leaves this object’ s boundaries (and goes into
adifferent module window, for example) the pointer messages will continue to go to the
object. When the user lifts up the pen, the pointer will be released and the object will no
longer own the pointer. Be extremely careful that when you do capture the pointer that
you are certain to release it. Otherwise user input will be stuck on the object that
captured and didn’t release the pointer.

PEG Data Types

In section we will look at some important data types that are used in PEG and throughout
the ClassPad, but are not based on the PegThing.

Fundamental Data Types

The following simple data types are used by PEG instead of the intrinsic data types
defined by the compiler to avoid conflicts when running on CPUs with differing basic
word length and data manipulation capabilities. The comment next to each data type
describes the storage requirements PEG requires for each type:

typedef char CHAR // 8 bit signed

t ypedef unsigned char UCHAR // 8 bit unsigned
typedef short SIGNED // 16 bit signed

t ypedef unsigned short WORD // 16 bit unsigned
typedef int LONG// 32 bit signed

typedef unsigned int DWORD // 32 bit unsigned

PegPoint

PegPoint is abasic pixel address datatype. The x,y position is always relative to the top-
left corner of the screen. PegPoint is defined as:

struct PegPoi nt

S| GNED x;
SI GNED v;
}s

Note that PegPoint contains SIGNED data values. This meansthat it is perfectly normal
and acceptable during the operation of PEG for at |east some portion of an object to have

18

negative screen coordinates. This simply means that the object has been moved partially

or entirely off the visible screen. Of course PEG clipping methods prevent the object
from trying to access the non-existent area of video memory.

PegRect

A large part of your programming tasks when working with the graphical interface on the
ClassPad will revolve around defining and cal culating rectangular areas on the screen. By

providing a very complete set of operators and miscellaneous member functions, the
PegRect classis designed to facilitate these types of operations. PegRect is defined as:

struct PegRect

{

voi d Set (SI GNED x1, SIGNED yl, SIGNED x2, SIGNED y2)
{

wLeft = x1;

wlop = yl1;

wRi ght = x2;

wBottom = y2;
}
voi d Set (PegPoint ul, PegPoint br)
{

wLeft = ul.x;

wlop = ul.vy;

WRi ght = br. x;

wBottom = br.y;
}
BOOL Cont ai ns(PegPoi nt Test);
BOOL Cont ai ns(SI GNED x, SIGNED y);
BOOL Cont ai ns(PegRect &Rect);
BOOL Overl ap(PegRect &Rect);
voi d MoveTo(SI GNED x, S| GNED y);
voi d Shift(SIGNED xShift, SIGNED yShift);
PegRect operator &=(PegRect & her);
PegRect operator | = (PegRect &X her);
PegRect operator &(PegRect &Rect);
PegRect operator ~= (PegRect &Rect);
PegRect operator +(PegPoint &Point);
PegRect operator ++(int Xx);
PegRect operator += (S| GNED);
PegRect operator --(int x);
PegRect operator -= (SI GNED);
BOOL operator != (PegRect &Rect);
BOOL operator == (PegRect &Rect);
SIGNED W dt h(void) {return (wRi ght
SI GNED Hei ght (void) { return (wBottom - wlop + 1);
S| GNED wieft;
SI GNED wTop;
SI GNED wRi ght ;
SI GNED wBot t om

1

- weeft + 1);}

19

There is more information about using these functionsin the Window and Screen
Drawing section of this document.

PegMessage

PegM essage defines the format of messages passed within the PEG environment.
PegMessage is defined as:

struct PegMessage

{
PegMessage() {Next = NULL; pTarget = NULL;}
PegMessage(WORD wVal) {Next = NULL; pTarget = NULL; wlype=wVal ;}
WORD wType;
S| GNED i Dat a;
PegThi ng *pTar get ;
PegThi ng *pSour ce;
PegMessage *Next;

uni on

{
LONG | Dat a;

PegRect Rect;

SI GNED i User Dat a[4] ;
WORD wUser Dat af 4] ;
PegPoi nt Poi nt;

voi d *pDat a;

b

For user-defined messages, all but the wType and pTarget message fields can be used in
any way desired. TheiUserData, wUserData, and pData fields are intended to allow you
to easily pass any type of datain your user defined messages. Refer to the section on
Messages and Message Handling for more information on PegM essage.

CPString

The CPString class encapsul ates the memory allocation necessary for string handling,
while still providing access to araw char*. For more information on the member
functions of CPString, refer to the section Srings and String Handling In the ClassPad in
this document.

CPArray

The CPArray class manages a variable sized array of void's, encapsulating the memory
management. The CPArray class provides an easy interface for managing objects in
memory.

Thefollowing isalist of al public member functions as well as a comment describing
what each function does:

/1 Return the current size of the array
int GetSize () const

20

/1l Get the value at the given index
void * GetAt (int nlndex)

/1 Set the value at the given index
void SetAt (int nlndex, void *pEl enent)

/!l Resize the array. Note that any objects that fall of the end of the
/1 array are the programer’s responsibility
void SetSize (int iNewSize, int iGowBy=-1)

/1 Add an itemto the end of an array
int Append (const CPArray &array)

/1 Copy the array
void Copy (const CPArray &array)

/1 Free unused nmenory above the current upper bound.
void FreeExtra ()

/1 Set the array to the given index. |If the index is out of the bounds
/1 of the array, grow the array to include this index
void SetAtGow (int nlndex, void *pEl enent)

/1 Insert elenent nCount tinmes at the specified index
void InsertAt (int nlndex, void *pEl enment, int nCount=1)

/1 Insert elenents from another CPArray starting fromthe given index
void InsertAt (int nlndex, CPArray *array)

/1 Renpbves nCount elenents starting at specified index
void RenobveAt (int nlndex, int nCount=1)

/! Add an elenent to the end of the CPArray
void Add (void *pEl enent)

/1 Renoves all objects fromthe CPArray. The renpved objects are not
/1 del eted
void RenoveAll ()

The GetAt() method is memory safe, and will return NULL if the index is outside the
array. Likewise, SetAtGrow() will resizethe array if it istoo small. CPArray does not
manage the memory of the objects. It only manages the memory of the array structure. It
isyour responsibility to delete al objects from memory.

CPList

The CPList isasingly linked circular list of void*. CPList has several member functions
that allow for navigation through the list, as well as retrieving items from the list. The
following isalist of al public functions and a brief description of what they do (Note:
ent istypedef’d to void*):

/1l Returns the object pointer at the begining (head) of the Iist
ent Head();

21

/1l Returns the object pointer at the end (tail) of the Iist

ent Tail ();

I/l Inserts ent at the head of the |ist
virtual ent Insert(ent a);

/1] Inserts ent b before ent a in the |ist
void InsertBefore(ent a, ent b);

/1l Inserts ent b after slink g
void InsertAfter(slink* g, ent b);

/l/ Inserts ent b after ent a in the |ist
bool InsertAfter(ent a, ent b);

/1l Replaces ent a with ent b
bool Replace(ent a, ent b);

/1] Appends ent @ a to the tail of the list
i nt Append(ent a);

/1] Renpves the |last elenent fromthe |ist
ent Pop();

/1] gets the first element of the list without renoving it
ent Get();

/1l clears list, does not delete objects
void dear();

/1l Renoves the link referring to ent a fromthe list. a is not deleted

voi d Renmove(ent a);

/1! returns the nunber of elenents in the |ist
i nt Count() const;

/1] returns TRUE if the |ist contains ent a
i nt Contains(ent a) const;

/1] 1ndex operator gets the i'th element if a list
ent operator[](int i) const;

22

Messages and Message Handling

The driving force behind the graphical interface on the ClassPad comes from events from
the input devices and other PEG objects. All of these events all sent as messagesin the
PegM essageQueue. The PegM essageQueue is an encapsulated FIFO message queue
with member functions for queue management. It also performs timer maintenance and
mi scellaneous housekeeping.

The messages placed in the queue contain notifications and commands that cause the
graphical elements to redraw themselves, remove themselves from the screen, resize
themselves, or perform any number of various other tasks. Messages can also be user-
defined, allowing you to send and receive a nearly unlimited number of messages whose
meaning is defined by you. This section will discuss these messages' structure, aswell as
how the messages are handled and used.

PegMessages

Definition
Messages are defined by PEG as simple structures containing fields indicating the source,

target, and content of the message. The definition of this data structure, called
PegM essage, is shown below:

struct PegMessage
{
PegMessage() {Next = NULL; pTarget = NULL;}
PegMessage(WORD wval) {Next = NULL; pTarget = NULL; wTlype =
wval ; }
WORD wType;
SI GNED i Dat a;
PegThi ng *pTar get;
PegThi ng *pSour ce;
PegMessage * Next ;

uni on

{
voi d *pDat a;
LONG | Dat a;
PegRect Rect;
PegPoi nt Poi nt;
LONG | User Dat a[2] ;
DWORD dUser Dat a 2] ;
SI GNED i User Dat a[4] ;
WORD wUser Dat af 4] ;
UCHAR uUser Dat a[8] ;

}s

Messages are identified by the member field wType. Thisis a 16-bit unsigned integer
value, which allows 65,535 unique message types to be defined. Currently PEG reserves
the first 5000 message wType values for internal messages, which leaves message values
5000 through 65,535 available for user definition. The number of messages reserved for

23

use by PEG may change dlightly in future releases, and the library therefore provides a
#define indicating the first message value which is available for user definition. This
#defineiscalled FIRST_USER_MESSAGE.

Peg System Messages

PEG messages can be divided into two types. PEG system messages and USER messages.
Aswe just mentioned, whether a message is a system message or a user message is
determined by the value of the message wType field.

PEG uses system messages internally to command objects to perform certain operations.
For example, before an object is drawn PEG sends the internal message PM_SHOW.
PEG knows that any preparation to that needs to be done before drawing can be called
when that object’s PM_SHOW message is received.

It is very common to want to receive and process system messages within your
application. Thisis sometimes called ‘intercepting’ a message, because you can catch a
message that PEG has sent to an object and change the interpretation of the message, or
even cause the object to ignore the message entirely.

While at first you may want to avoid intercepting system messages, as your confidence in
working with the library grows you will find that thisis often the most convenient way to
accomplish many tasks. Some of the common Peg System Messages are listed below.

For acomplete list, refer to pmessage.hpp.

PM_ADD This message can be issued to add an object to another
object. The message pTarget field should contain a pointer
to the parent object, and the message pSource filed should
contain a pointer to the child object.

PM_DESTROY This message is sent to PegPresentationM anager to destroy
an object. The pSource member of the message should
point to the object to be destroyed.

PM_SIZE This message is sent to an object to cause it to re-size. This
is equivalent to calling the Resize() function. Note that
PEG does not differentiate between moving an object and
resizing an object. Both are accomplished viathe Resize
operation. The new size for the object isincluded in the
message Rect field.

PM_CLOSE This message is recognized by PegWindow derived
objects, and causes the recipient to remove itself from its
parent and delete itself from memory.

PM_HIDE This message is sent to an object whenever it is removed
from avisible parent.
PM_SHOW This message is sent to an object when it isadded to a

visible parent, before the object isfirst drawn. This allows
an object to perform any necessary initialization prior to

24

drawing itself on the screen.

PM_POINTER_MOVE

This message is sent to an object whenever the pen moves
over the object.

PM_LBUTTONDOWN

This message is sent to an object when the user generates a
pen down event. PegPresentationManager routes pen input
directly to the lowest child object containing the click
position. If the child object does not process pen input, the
message is passed up to the parent object. This process
continues until an object in the active tree processes the
message, or the message ends up back at

PegPresentationM anager. The position of the penis
included in the message Point field.

PM_LBUTTONUP

This message is sent to an object when the user releases the
pen. The flow of this message isidentical to
PM_LBUTTONDOWN.

PM_DRAW This message can be sent to an object to force that object to
redraw itself.

PM_REDRAW Like draw, but only updates the areathat is marked as
invalid.

PM_CURRENT Sent to an object when it becomes a member of the branch

of the presentation tree that has input focus.

PM_NONCURRENT

Sent when the object is no longer part of the focus tree.

PM_POINTER_ENTER

Sent when the pen enters a PegThing's bounding box.

PM_POINTER EXIT

Sent when the pen exits a PegThing's bounding box.

PM_EXIT

This message is sent to PegPresentationManager to cause
termination of the application program.

PM_VSCROLL

Sent by a scrollbar to signal vertical scrolling.

PM_HSCROLL

Sent by a scrollbar to signal horizontal scrolling.

PM_TIMER

This message is sent to an object that has started atimer via
the PegM essageQueue TimerSet function when that timer
expires. The ID of thetimer isincluded in the iData
member of the message.

PM_KEY

This message is sent to the current input object when
keyboard input is received. The message iData member
contains the corresponding ASCII character code, if any,
and the |Data member of the message contains the
keyboard scan code, if available.

PM_CUT

User requested to cut data from the current object to the
CPClipboard.

PM_COPY

User requested to copy data from the current object to the
CPClipboard.

PM_PASTE

User requested to paste data to the current object from the
CPClipboard.

PM_DIALOG_NOTIFY

This message is sent to the owner of a PegDialog when the
dialog window is closed if the dialog window is executed
non-modally. The message iData member will contain the

25

ID of the button used to close the dialog window.

HM SYS ZOOM Zoom the active CPM oduleWindow to full screen.

HM_SYS SWAP Swap the two CPM oduleWindows in the CPMainFrame.

HM_SYS CLOSE The application is closing. Y ou must save your state when
you get this message.

HM_SYS RESUME The ClassPad is powering off. Save your state so you can
resume later.

HM_SYS KEYBOARD Turn on the keypad.

HM SYS CLEAR The CLEAR key was pressed.

PM_LOSING FOCUS Sent just before target loses focus

PM_GAINING FOCUS Sent after target gains focus

PM_GET_INPUT_STATE | Sent to request the current input state of what has focus.
Used by dialogs to restore the selection, cursor, scroll, etc.
The pointer parameter MUST point to a
PeglnputStateContainer object. When receiving this
message, any input control should save its state and give it
to the container with the SetlnputState member.

PM_FIRST_START Sent to the current focus after PegApplnitialize is finished
but before the presentation manager's Execute loop
PM_VALIDATE Sent to anotify adialog control to validate it's data

User Defined Messages

Why would you want to define your own messages? Thisis the way you make your user
interface do something useful when the user inputs information. Y our interface will be
composed of any combination of PEG windows, buttons, strings, etc. along with your
custom objects. At some point you will want to perform an action based on the user
selecting a button, or typing into astring field. Y ou are notified of this user input via
messages sent from the PEG control to the parent window. When you create a control
object, you tell the object what message to send back to the parent window when the
object is modified by the user by defining the object ID value. Once you have constructed
and displayed the control, you simply wait for the arrival of the message that indicates the
control has been modified. There are many other reasons you will want to define your
own messages, and it will become clearer as you begin using the library.

How do you send a message from one window to another? There are three ways. First,
you can either call the destination window’ s message handling function directly, passing
your message as a parameter. Second, you can load the message pTarget field with the
address of the window (or any object) that should receive the message and push the
message into PegM essageQueue. Finally, you can load the message pTarget field with
NULL, the message iData member with the ID of the target window, and push the
message into PegM essageQueue. The second or third methods are generally preferred,
because it adheres to the encapsulation philosophy.

26

If you load message pTarget values with pointers to application objects, you must insure
that the object is not deleted before the message arrives. When a user defined message
containsanon-NULL pTarget value, thereis no verification that the pTarget field of the
message is avalid object pointer. For this reason, in some situations it is better to use
NULL pTarget values, and route messages using object IDs. If PegPresentationManager
isunable to locate an object with the indicated 1D, the message is ssmply discarded.

There are also differences between these methods in terms of the order in which things
are done. If you push a message into PegM essageQueue, the sending object immediately
continues processing, and the target window will receive and process the new message
after the sending window returns from message processing. If you call the receiving
window’ s message handling function directly, it will immediately receive and process the
message, in effect pre-empting the current execution thread. While these differences are
generally inconsequential for user-defined messages, they can be very important for PEG

system messages.

Peg Signals

Messages are used to issue commands or send other information between objects that are
part of your user interface. In the previous section we learned that a common use for
user-defined messages is to provide notification to a parent window when a child control
has been modified. This usage is so common, in fact, that PEG has defined a smplified
method for defining these messages and a corresponding syntax for receiving them. This
method is called signaling, and the messages sent and received viasignaling are called
signals. Signals are designed to simplify your programming effort by reducing the
complexity associated with windows and dial ogs containing a large number of child
controls.

PEG defines many different signals that can be monitored for each control. Whenever the
control is modified by the user, the control checksto seeif you have configured it to
notify you of the modification. If you have, the control automatically generates a unique
message number based on the control ID and the type of notification. The message source
pointer isloaded to point to the control, and the message is then sent to your parent
window or dialog.

To receive asignal, PEG definesthe SIGNAL macro, which isused in your parent
window message processing function. The parameters to the SIGNAL macro are the
object ID and the notification message in which you are interested. The SIGNAL macro
is a shorthand method for determining the exact message number sent by a control with a
given 1D and corresponding to one of the possible notification types.

A simple example of using SIGNALSs s detecting a button click. To send asignal, your
button must be created with an Object ID greater than 0. For example, hereisthe
creation on the save button taken from the AddressBook example that came with the
SDK:

27

/1 Create Save Contact button
/1 The button gets created with ID SAVE | D
b = new PegBit mapButton(rr, &gbsaveBitmap, SAVE | D, AF_ENABLED| TT_COPY);

When this button is clicked, a unique message will be sent to the window’ s message
processing function that is formed by combining the Message |d PSF_CLICKED and the
object ID SAVE_ID. In the next section we will continue this example by showing how
this signal will be processed by the button’ s parent window.

Handling Messages

Any add-in that you write that must respond to user input will have to process
PegMessages and Signals. For a PegThing to respond to a message it must override the
following function:

virtual SIGNED Message(const PegMessage &Mesg);

Thisfunction is called by PegPresentationManager to allow an object to process a
message. Thisis the most commonly overridden of all PEG functions, because
customizing object behavior is done by adding your own message types and message
handling code to the default operation performed by PEG.

Overridden Message functions should in most cases return aresult of 0. A non-zero
return value is used to terminate modal window execution. PegWindow derived classes
such as PegDialog and PegM essageWindow return non-zero results when asignal from a
child control isreceived that causes the window to close. In all other cases, M essage()
should return O for normal operation.

In cases where you override a PEG class' s M essage() function, you should make sure
that you pass the messages you are not interested in down to the base class to insure that
normal default operation occurs, (unless of course you are specifically intercepting a
message to prevent some default operation!). In fact, if you decide to act on the receipt of
a PEG system message, you should generally pass the system message down to the base
class befor e you perform your own processing.

A typical Message() function for a derived class would appear as follows (assuming in
this example that the class is derived from CPWindow):

SI GNED Myd ass: : Message(const PegMessage &Mesg)

{
switch (Mesg. wlype)

{

case U M _SHOW
PegW ndow: : Message(Mesq) ;
/1 add your own code here:
br eak;

case USER _DEFI NED_MSGL:

/1 code for your user nessage
br eak;

28

case USER DEFI NED _Ms&2:
/1 code for another user defined nmessage:
br eak;

case SIGNAL(I DB OK, PSF_CLI CKED):
/1 code for OK button clicked:
br eak;

defaul t:
/1 pass all other nessages down to the base cl ass:
return CPW ndow. : Message(Mesg) ;

}

return O;

}

In the previous section, we created a button with Object ID SAVE_ID. To catch the
signal that this button sends, our Message function would look like this:

SI GNED Addr essW ndow. Message(const PegMessage &Mesgq)

{
switch (Mesg. wlype)

{

case SIGNAL(SAVE | D, PSF CLI CKED):
/1 code for Save button clicked:
Save();
br eak;

defaul t:
/1 pass all other nessages down to the base cl ass:
return CPW ndow. : Message(Mesg) ;

}

return O;

}

It is recommended that you refer back to the AddressBook example to get more
information about how to create an overridden M essage() function.

Message Flow and Routing

PEG follows a bottom-up message flow philosophy. This means that whenever possible
messages pulled from PegM essageQueue are sent directly to the lowest level object that
should receive the message. If the object does not act on the message, it is passed ‘ up the
chain’ to its parent, which may be any other type of object, such as a PegGroup or
PegWindow. This flow continues until either an object processes the message, or the
message arrives at PegPresentationManager. If a user-defined message arrives at
PegPresentationManager, it will be ignored. This occurrence is usually an indication that
you forgot to catch a message in one of your window classes.

29

Peg Timers

PEG timers provide a simple means for you to receive periodic timer messages in your
windows or controls. Any object derived from a PEG object can start any number of
individual timers. When the timer expires, that object will receive aPM_TIMER message
from PEG. The message iData member will contain the ID of the timer that expired. If
the timer is started with a non-zero reset value, the timer will automatically |oad itself
with the reset value and begin a new timeout.

PEG timers are maintained by PegM essageQueue. In order for PEG timers to function,
your system software must call the PegM essageQueue member function Timer Tick
periodically to indicate to PEG that one tick time has expired. Timers are created and
destroyed with the following functions:

inline void SetTimer(WORD wid, LONG | Count, LONG | Reset)
inline void KillTinmer(WORD W d)

Y ou start a PegTimer by calling the PegM essageQueue member function SetTimer ().
The parameters allow you to specify atimer Id value, the first timeout period, and
successive timeout periods. The timer 1d value can be any number greater than zero. If
you have one window or control that creates many timers, you will probably want to
assign them unique Id values so that you can recognize each timer expiration message.
While you have an active timer running, you will receive aPM_TIMER message in your
M essage() handling function each time the timer expires. When you want to stop a timer,
you use the PegM essageQueue member function Kill Timer (). If you pass an Id value of
zero to the Kill Timer function, al timers owned by the calling object are deleted.

For more information on messages, refer to the example add-in DebugExample. This
add-in outputs the names of the messages that get sent to the M essageQueue on the
ClassPad. Itisavery useful add-in to help you understand when message are sent, and in
what order they are sent.

30

Window and Screen Drawing

The WindowsExample Add-in

This section will provide you with information on how drawing works on the ClassPad
300. To help show how these ideas are applied to an add-in application, we have
provided an example add-in that uses most of the concepts that will be discussed.

The add-inislocated in Documents\ClassPad 300 SDK
\Examples\WindowsExample\WindowsExample.dev.

It is recommended that you run this application and see what type of drawing functions it
performs. It isaso recommended that you try changing the code to see how your
changes affect what is drawn to the screen. We will refer back to and discuss the source
code of this add-in throughout this section to see how the drawing topics we cover are
used.

An Overview of Windows in the WindowsExample
This section serves as a brief explanation of the windows used in WindowsExample. For

amore extensive discussion of window classes on the ClassPad, see the User Interfaces
section.

CPMainFrame

Almost every application on the ClassPad has a CPMainFrame as its base window. From
using the ClassPad you should be aware that an application can have two main module
windows that can be resized and swapped. Depending on which of these two windows
has focus different menus, toolbars and status bar are displayed. It isthe CPMainFrame's
job to handle these multiple module windows and make sure that the correct Ul is

displayed.

CPModuleWindow

A CPModuleWindow is the base class for applications or “modules’ on the ClassPad.
Each CPModuleWindow can have its own set of menus, toolbar items, and status bar
messages. CPModuleWindows must be added to a CPMainFrame. The CPMainFrameis
then in charge of handling any swapping or resizing of multiple CPModuléWindows.

CPWindow

A CPWindow is arectangular screen areathat supports drawing and scrolling.
CPWindows are based upon PegWindows. The only difference between the two isthat a
CPWindow allows drawing to the window in relative coordinates. Note that CPWindows
cannot have their own menus or toolbars.

Windows in WindowsExample

Let’stake alook at the WindowsExample add-in and see how the three different
windows are used to create the application.

31

First we will look at the creation of the CPMainFrame in PegApplnitialize. The
mainframe is created by passing in a peg rectangle that is the size of the mainframe.

voi d PegApplnitialize(PegPresentati onManager *pPresentation)

{
PegRect Rect;

Rect . Set (MAI NFRAVE_LEFT, MAI NFRAVE_TOR,
MAI NFRAME_RI GHT, MAI NFRAMVE_BOTTOM) ;

CPMai nFrane *nmw = new CPMai nFranme(Rect);

Next, we want to add an ExampleWindow to the mainframe. Remember that only

CPM oduleWindows can be added to a CPMainFrame. Therefore, ExampleWindow must
be, and in fact is, derived from a CPModuleWindow. Here isthe code that creates an
instance of ExampleWindow that isthe size of afull screen application in the mainframe:

PegRect Chil dRect = mw >Ful | AppRect angl e();
Exanpl eW ndow *ex_wi n = new Exanpl eW ndow Chi | dRect, mn) ;

Now let’s jump out of PegApplnitialize for amoment, to see what ExampleWindow’s
constructor does.

Exanpl eW ndow: : Exanpl eW ndow PegRect rect, CPMai nFrane
*frame) :CPMbdul eW ndow(rect, 0, 0O, frame)

{

HasLi nes = fal se;

Set Scr ol | Mbde(WM AUTCSCROLL) ;

PegRect r = nClient;

r -= 20; // make the pan wi ndow a bit snaller

m panWn = new PanW ndow(r);
Add(m panWn) ;
}

Y ou can see that ExampleWindow has a reference to a PanWindow. PanWindow is
based on the CPWindow class. The constructor creates a new PanWindow and adds it to
ExampleWindow.

Finally if we jump back to PegApplnitialize we see that the ExampleWindow gets added
to the CPMainFrame, and the CPMainFrame gets added to the PegPresentationM anager.

my >Set TopW ndow(ex_wi n) ;
my >Set Mai nW ndow(ex_wi n) ;

pPresent ati on- >Add(m) ;

32

So to sum that all up: A CPWindow got added to a CPModuleWindow that got added to a
CPMainFrame that was added to the PegPresentationManager. All applications created
for the ClassPad will follow part of this hierarchy. That is, all CPModuleWindows must
be added to a CPMainFrame, and all CPMainFrames must be added to a
PegPresentationManager. However, anything that is based on a PegThing can be added
to a CPModule Window.

The following graphic illustrates a possible parent-child hierarchy using these windows.

On the right iswhat the hierarchy may look like on the ClassPad. Note that the
PegPresentationManager is not actually visible on the screen.

PegPresentationManager
Pe gPresentatliun Manager / CPMainFrame N

CPModuleWindow (1)

CPMainFrame

/ \ PegPrompt

CPModule (2) CPModule (1)
CPWindow (A) CPWindow (B) PegPrompt CPModuleWindow (2]
/ \ CPWindow(A)
CPWindow(B])
CPString PegPrompt PegPrompt

CPString

\C _/

Coordinates on the ClassPad

When designing applications with a graphical user interface on a specific platformit is
imperative that you know what type of screen coordinates the platform uses. Inthe
ClassPad, all coordinates sizes are based on pixels. In al PEG base classes coordinates
are absol ute starting from the top left corner of the screen, which is (0,0). While this may
not seem to be a problem at first, when you start adding several windows with toolbars
and menu bars using the top left corner as a reference point can become confusing.

For example, let’s say that you wanted to add a PegPrompt to (0,0) of your PegWindow
inside a CPMainFrame. Using the code:

text = new PegPronpt (0,0, (PEGCHAR*)"Pronpt at 0,0");
Add(text);

you might expect aresult like the screenshot on the left:

33

4 4
[dd Text] #]| [[rdd Text] b
Frompt at 8,8

| |
Figl. AddRapromptat0,0 Fig2. Add aprompt at 0,0

However, while the prompt may be at (0,0) in your PegWindow’ s coordinates, it is not at
(0,0) according to the CPMainFrame coordinates. Placing the prompt at absolute (0,0)
would create it outside of your window — somewhere underneath the menu bar, and
therefore it would not get drawn (Fig2).

To fix this problem the ClassPad 300 SDK includes the CPWindow. CPWindow and all
objects that are derived from CPWindow, support a function called AddR(). AddR()
does the same thing as Add() — adds a PegThing to “this’. However, AddR() allows you
to add objects to coordinates relative to the window that called AddR(). Therefore the
following code would produce the screenshot in Figl.:

text = new PegPronpt (0,0, (PEGCHAR*)"Pronpt at 0,0");
AddR(t ext);

It is not required that you use AddR() with a CPWindow, but if you are dealing with
windows that are being moved and resized it is easier than trying keep up with absolute
coordinates.

Drawing on the ClassPad

Overriding the Draw() Function

The virtual function Draw() is called by PegPresentationManager when an object
initially needs to draw itself, or by the application software when an object has been
modified. Thisisone of the most commonly overridden functionsin custom classes
created by PEG users, because by overriding this function you can define a new object
with a custom appearance.

Usually when you override the Draw() function you will allow the base-class Draw()
function to execute at some point in your routine. A common question is“When do | call
the base-class Draw() function?’. This depends on whether you want your custom
drawing to appear on-top or below the default operation. If you want your customizations

34

to appear ‘on-top’ (which isusually the case), you should call the base-class draw
function before you do your own drawing. In some cases you may not want to invoke the
base-class Draw() function at all. Thisis perfectly OK, aslong as you remember afew
rules:

1) Start your draw function with a call to BeginDraw().

2) After you have done your custom drawing, call DrawChildren() to insure child
objects get their chance to draw.

3) After everything is done, call EndDraw().

The callsto BeginDraw() and EndDraw() should actually be included regardless of
whether or not you call the base-class draw function. These calls inform the PegScreen
driver when a drawing sequence begins and ends. When you override the Draw()
function, and call the base-class draw function during your drawing routine, the
BeginDraw() calls become nested. Thisis expected by the PegScreen driver, which
keeps track of the nesting level and recognizes when the total drawing operation is
complete by tracking this BeginDraw()-EndDraw() nesting.

The Draw() method in ExampleWindow.cpp does not call its base-class Draw(), but
instead the previoudy stated three rules are followed properly.

voi d Exanpl eW ndow. : Draw()

{
Begi nDraw() ;
Dr awFr ane() ;
DrawLi nes() ;
Dr awChi | dren() ;
EndDr aw() ;

}

First the function starts with BeginDraw(). Next, the custom drawing is done by
functions DrawFrame() and DrawL ines(). After that the custom drawing is finished,
PanWindow is drawn by calling the DrawChildren() function. Finally, we finish the
Draw() method with acall to EndDraw().

Invalidating and Drawing outside of the Draw() Method

Y ou can also write functions that draw on the screen outside of the Draw() function.
These functions must be members of a PegThing derived class, or at least have accessto
a PegThing object, since all of the PegScreen drawing functions require as a parameter a
pointer to the PegThing object calling the drawing function. PegScreen requires this
pointer to insure that an object is not allowed to draw outside of the areait ‘owns on the
screen.

PegScreen only allows drawing to occur to areas of the screen that have been invalidated.

Aresas of the screen are invalidated by calling the I nvalidate() function. If all of your
drawing is done with an overridden Draw() function, you don’t need to worry about

35

screen invalidation, since your Draw() function is called specifically because an area of
the screen has been invalidated.

If you need to draw on the screen outside of the draw function you need to remember to
invalidate the area you are going to draw to before you start drawing. If you want to be
allowed to draw anywhere within the client area of your object, you can ssimply call the
I nvalidate() function with no parameters, which invalidates the area of the screen
corresponding to an objects client area. Y ou can also calculate and specify amore
limiting rectangle to clip your drawing, and pass that rectangle to the I nvalidate()
function. No matter how large the invalidated rectangle on the screen, you are never
allowed to draw outside of an object’s borders.

Drawing and Invalidating in WindowsExample

WindowsExample uses invalidation to draw in the DrawL ines() function of
ExampleWindow.cpp. Thisfunction iscalled when a user clicks on the Toggle Lines
button.

Before DrawL ines() can begin drawing to the screen, it must first invalidate the area
where it will draw. In this case the entire ExampleWindow will be drawn to, so
Invalidate() with no clip region is called to invalidate then entire mClient. Let'stake a
closer look at DrawLines:

voi d Exanpl eW ndow. : Dr awLi nes(voi d)

{
PegCol or Col or (BLACK, WHI TE, CF_FILL);

SI GNED yPos = nClient.wTlop;

Invalidate(); // invalidate ny client area
Begi nDraw(); // prepare for draw ng
Rectangl e(nClient, Color, 0);

i f (HasLi nes)

whi | e(yPos <= nClient.wBottom

Line(nCient.wLeft, yPos, nCient.wR ght, yPos, Color);
yPos += 4;
}
}
EndDr aw() ;
}

Asyou can see, before drawing the lines the entire ExampleWindow areais invalidated
with the call to Invalidate. Commenting out the Invalidate() call will give you the result
you should expect -- nothing will get drawn to the screen. Y ou should also notice that all
drawing functions are placed in between a BeginDraw() and EndDraw() call.

Looking at ExampleWindow’ s draw function you may wonder why thereisacall to
DrawLines(). Asmentioned before, Draw gets called because the screen was
invalidated. We want to make sure the lines are redrawn after an invalidation occurs that
wasn’t because a user clicked on the Toggle Lines button. Consider moving the
PanWindow with the pen. Since we are moving the location of PanWindow, a new

36

portion of ExampleWindow will become visible. ExampléWindow must be redrawn to
display this portion. Thisisdone by calling the parent’s draw function in
OnPointer M ove() in PanWindow.cpp:

Parent ()->Draw();

If we did not call DrawL ines() in the Draw() function then ExampleWindow would be
redrawn without the lines. Y ou should try commenting out the call to DrawLines() in
the Draw function to see this for yourself.

If you look in PanWindow.cpp you will see that we are drawing in the functions
AddText() and OnPointer Move(), but do not call Invalidate(). In both of these
functions the Resize() method is called to either expand or move the PanWindow. The
Resize() method automatically calls Invalidate() before the window is moved or resized
and after the move or resize is complete. This eliminates the user from being responsible
for calling I nvalidate() when using Resiz&().

Object Boundaries

mReal, mClient and PegRects

All PegThing derived classes have two rectangles associated with them: mReal and
mClient. The rectangle mReal defines the outermost limits of an object. The object and
all children of the object are prevented from drawing outside the mReal rectangle.

The mClient rectangle defines the interior boundaries of an object. The mClient rectangle
isalways a sub-set of the mReal rectangle. All children of an object are clipped to the
parent’s mClient rectangle, unless the children have PSF_NONCLIENT system status, in
which case they are clipped to the parent’s mReal rectangle.

For simple objects such as PegButton and PegString, the mClient rectangle is smaller
than the mReal rectangle only by the width of the object border. If the object has no
border, the mClient and mReal rectangles are identical. For PegWindow and derived
classes, the mClient rectangle is further reduced by the size of the non-client decorations
such as atitle bar, menu bar, status bar, and horizontal and vertical scroll bars. In other
words, non-client children are positioned in the region between the mClient rectangle
limits and the mReal rectangle limits.

The rectangle you pass to most PEG object constructors defines the outermost limits of
the object, hence this rectangle becomes the mReal member rectangle. PEG objects
initialize their mClient area by calling the PegThing member function I nitClient(), which
reduces the mClient area by the object border width. PegWindow performs further
operations to reduce the mClient area as decorations are added to the window.

For example, here is what ExampleWindow’s mReal and mClient look like when there
are scroll bars:

37

I3

[fdd Text|Toggle Lines] »
— =

[

Hello.

mClient

1 -]

m _ mReal

Notice that the mClient, the area you can draw to, does not extend over the scrollbars.
This means that you cannot draw over the scroll bars and the drawable areain your
window shrinks when scroll bars are added.

mClient can shrink in other ways aswell. If you look back at the Draw() function in
ExampleWindow, you will seethat thereisacall to DrawFrame(). This puts a one pixel
border around ExampleWindow and makes mClient one pixel smaller than mReal on all
sides. Thethicker you make this frame, the more mClient will shrink.

Using Object Boundaries in WindowsExample

Bounding rectangles are used in WindowsExample in the functions DrawT ext() and
OnPointer M ove() of PanWindow.cpp. We will first take alook at how they are used in
DrawT ext(), then in OnPointer M ove().

Bounding Rectanglesin DrawT ext()

The DrawT ext() function adds a new PegPrompt to the bottom of PanWindow each time
itiscaled. At first this seems simple enough, but what happens when you run out of
room in PanWindow? How do you know when the PegPrompts have grown past the
height of PanWindow?

As mentioned in the previous section, all objects derived from PegThing have a mClient
and an mReal associated with them. To know when we have run out of roomin
PanWindow, we need a running rectangle that is the union of the mClients for the
PegPrompts that have been added. To accomplish thiswe create a class member called
promptRect that is a PegRect. Each time we add a new PegPrompt, we take the union of
the new PegPrompt’ s mClient and the existing promptRect. The code looks like this:

text = new PegPronpt (4, pronptRect. Hei ght () +25,

(PEGCHAR*) "W ndow Resi zed!");
pronpt Rect | = text->nReal;
AddR(text);

38

Notice that we add the PegPrompt 25 pixels lower than the height of promptRect. This
spaces the PegPrompts out so they are not drawn on top of each other. The following
figure will give you an idea of how promptRect grows as a PegPrompt is added:

= (= =
|F|dd TextlT-:-ggle Line-sl F |Fh:|-:| TextITDggle Linesl F |Fh:|d TextITDggle Linesl F
|Hello. | Hello. Hello.
Keep Clicking... Keep Clicking...

Keep Clicking...

Keep Clicking. ..

|] |
A rough idea of what promptRect’ s boundary, drawn in blue, looks like on startup and after adding a
couple of new PegPrompts

In a couple more clicks, the height of promptRect will grow larger than PanWindow’s
mClient height. When this happens, there will be nowhere to put the next PegPrompt and
we will have to resize PanWindow.

To resize PanWindow, we need to create arectangle that will be the new size of the
window and pass it to the Resize() function. Hereisthe codeto do this:

i f(pronptRect.Height() + 25 > nReal . Hei ght ())

text = new PegPronpt (4, pronptRect. Height()+25,

(PEGCHAR*) "W ndow Resi zed! ") ;
pronmpt Rect | = text->nReal;
AddR(t ext);

Begi nDraw() ;

PegRect new rect = nReal;
new rect.wBottom += (25 + text->nReal . Hei ght());
Resi ze(new rect);

/1 Calling Resize with the sane size is used as a "trick" to
/1 force the parent to check for and add or renove scrollbars
Par ent () - >Resi ze(Parent () ->nReal) ;

Par ent ()->Draw() ;

EndDr aw() ;

}

First, we create a new rectangle and set it equal to PanWindow’s mReal. We then add
the height of the PegPrompt plus the 25 pixels of spacing to the bottom of it. This

39

rectangleis passed to Resize() to set PanWindow’s mReal to the new rectangle. Make
sure you do not set mReal and mClient explicitly. You can end up in an invalid state
where mClient is larger than mReal. By using the function Resize() it will make sure that
if mClient grows that mReal will also grow if necessary.

Bounding Rectanglesin OnPointer M ove()

In OnPointer Move(), PanWindow’s mReal is being moved by the amount that the pen
has been dragged. Theideas used here are very similar to what we did in AddText().
Again we will pass Resize() arectangle representing where PanWindow’s new mReal is
located. However, this time the window will not change size, just location. Hereisthe
code that accomplishesthis:

Begi nDraw) ;
PegRect rect;

/1 find the difference in x and y fromthis point p, to the | astPoint
diffx += p.x - ml astPoint. x;
diffy += p.y - mlastPoint.y;

/1 Set rect to nReal and then shift it by the difference in x and y
rect = nReal ;
rect. Shift(diffx,diffy);

/! Resize invalidates the old rect and new one for us

/1 1t also shifts all children in the window (so we don't
/1 have to worry about repositioning the PegPronpts)

Resi ze(rect);

/1 Calling Resize with the sane size is used as a "trick" to
/1 force the parent to check for and add or renove scrollbars
Par ent () - >Resi ze(Parent () - >nReal) ;

Par ent ()->Draw() ;

EndDr aw() ;

First we find how much the pen has moved in both the x and y direction by subtracting
the current point from the previous point. We then take a rectangle equal to mReal and
shift it by the x and y deltas. Finaly, we pass this rectangle to Resize(). Thistime
Resize() does not change the size of PanWindow, just itslocation. Since we are using
Resize() thereis no reason to call invalidate.

Scrollbars

How Scrolling Works

PegWindow provides the capability of adding scroll bars, and using these scroll bars to
pan or move the client area of the window. Scroll bars are added by calling the
Set ScrollM ode() PegWindow member function.

40

The scroll bars added to the window make use of two virtual PegWindow functions:
GetHScrollInfo and GetV Scrollinfo. When a scroll bar needs to update itself, it calls
these parent window member functions to learn the scroll bar limit, current setting, and
percentage visible data. GetH Scrolllnfo() and GetV Scrolllnfo() receive apointer to a
PegScrollInfo structure. It isthe job of these functions to fill in the PegScrollinfo wMin,
wMax, wCurrent, wStep, and wVisible values so that the scroll bar is correctly positioned.

The PegWindow class provides default implementations of GetHScrollInfo and

GetV ScrallInfo. These implementations examine all client-area children of the window to
determine the outer limits that the scroll bars should allow scrolling to. This default
implementation also uses the window client area width and height as the scroll bar
'visible' value.

The default implementation works well in most cases, and makes it very easy to create
scrolling client areas. All you need to do is add a child window to a scrolling parent that
ismuch larger than the parent client area. The default implementation will adjust the
scroll bars such that the entire child window can be viewed by moving the horizontal
and/or vertical scroll bars.

In some cases the default operation does not provide the required function. In these cases
you can override the GetHScrollInfo and GetV ScrollInfo functions to return custom
scrolling information. For example, suppose you want to create a continuous-time plot of
datavalues, and use a horizontal scroll bar to move back and forth in the time period
displayed. In this case you would create a derived PegWindow classin order to draw the
chart datain the window client area. Y ou would aso provide an overridden version of the
GetHScrollInfo function to make the horizontal scroll bar reflect the accumulated time
values. In this case, the Scrolllnfo minimum value might be the starting time of data
recording, the maximum value would be the current time, and the visible amount would
be the time period visible in the window client area.

Scrolling in WindowsExample

The WindowsExample add-in is a good example of using the automatic scrolling
provided with PEG. We know that once PanWindow is resized or moved, it will need to
scroll within ExampleWindow. To support scrolling we need to make sure that the
following are al true:

e ExampleWindow is a scrollable window
e ExampleWindow isthe parent of the window we want to scroll (PanWindow)
e ExampleWindow sets the correct scrolling mode

These three tasks are easily accomplished, most without any thought about scrolling.
ExampleWindow is derived from a CPM oduleWindow, which is a scrollable window.
When we add PanWindow to ExampleWindow, ExampleWindow becomes
PanWindow’s parent. Finally, we need to set ExampleWindow’ s scroll mode to be
WSM_AUTOSCROLL in its constructor:

41

Exanpl eW ndow:. : Exanpl eW ndow PegRect rect, CPMai nFrane
*frame) : CPMbdul eW ndow(rect, 0,0, frane)

{

HasLi nes = fal se;
Set Scr ol | Mode(WSM_AUTOSCROLL) ;
PegRect r = nClient;
r -= 20; // make the pan window a bit snaller
m panWn = new PanW ndow(r);
Add(m_panW n) ;
}

Scrolling is now set up to work in ExampleWindow.

When you run WindowsExample, you' | notice that PanWindow is smaller than
ExampleWindow and there are no scrollbars on startup. However, if you bring up the
soft keyboard, you will see that scrollbars automatically appear thanks to the automatic
scroll mode.

¢ ¢
|Fldd TextITnggle Linesl i |Fldd TextITnggle Linesl i

Hello. Hello.

e
[rnth [abc [cat [20 |EIE1E]
[[8ifofc]s], |5 |ards|=]x |+
log [1n | 1 (7 [=[=2]["]=]
x| e* [=t 4[58
HENEDN AHERE
L 1 -2 | «|E||ans
TRIG JCALE JorTH] vAR JEXE
o i
Examl peWindow on startup with no scrollbars, and ExampleWindow with automatic scrollbars after

bringing up the soft keyboard.

In both AddText() and OnPointer M ove(), PanWindow can change so that scrollbars
might be required. In AddText() the height of PanWindow can grow larger than the
height of ExampleWindow. In OnPointer M ove(), PanWindow can be moved outside of
ExampleWindow’s mClient. In both cases we can force ExampleWindow to check its
scrollbars by calling Resize() and passing initsmReal. The following codeis used in
both functions:

/1 Calling Resize with the sane size is used as a "trick" to force the
/1 parent to check for and add or renove scrollbars

Par ent () - >Resi ze(Parent () - >nReal) ;

Par ent ()->Draw() ;

Asthe comments say, thisis abit of a“trick” to cause ExampleWindow to realize that it
needs scrollbars to completely hold PanwWindow. Try commenting out the Resize() and

42

see what happens. If you move PanWindow off the screen, no scrollbars are added. But
if you bring up the soft keyboard the appropriate scrollbars will be drawn.

We suggest that you continue to add and comment lines out of the WindowsExample
add-in. Once you understand everything in the example, you will have agood
understanding of how drawing works on the ClassPad. If you have more questions, refer
to the ClassPad 300 SDK Reference Guide.

43

User Interfaces

We' ve discussed how to draw on the ClassPad and briefly touched on its windowing
architecture. In this section we will discussin detail what user interfaces are available on
the ClassPad as well as visit each type of window that is supported in the SDK.

Windows on the ClassPad

In the Window and Screen Drawing section, we gave an overview of the windows that
were used in the WindowsExample add-in application. In this section we will discuss
these again aswell as all of the other windows available in the SDK.

PegWindow and PegWindow Derived Windows

Class Name Derived From Styles Signals
PegWindow PegThing FF_NONE PSF _SIZED
FF_THIN PSF_FOCUS RECEIVED
FF_THICK PSF FOCUS LOST
PSF_KEY_RECEIVED

A PegWindow is abasic rectangular screen area supporting scrolling and clipping. Many
of the Windows in the ClassPad are based on a PegWindow. PegWindow provides the
capabilities of being re-sized by the user, having avirtual client area, having one of
several frame styles, and controlling non-client-area scroll bars.

A PegWindow with no border is useful as a container for other objects. The window can
be moved to different locations or added to different parent objects, and all of the
window's children will move with the window. A simple way to create awindow with a
virtual scrolling client areaisto nest alarge window within the client area of a parent
window.

PegWindow and PegWindow derived classes are also by default Viewports. This means
that objects underneath PegWindow are not allowed to obscure the screen area owned by
the window. Thisis an important performance-enhancing feature of PEG, and also
provides improved visual appeal.

The following example will create a PegWindow and add the window to the current
object. The window will fill the client area of the current object.

voi d Someoj ect: : Addd i ent W ndow(voi d)

{
PegW ndow *pW n = new PegW ndow(nClient);
Add(pW n) ;

PegPr esentationM anager

Class Name Derived From Styles Signals

PegPresentationManager | PegWindow None PSF _SIZED

PSF_FOCUS RECEIVED
PSF_FOCUS LOST

PSF KEY RECEIVED

The PegPresentationManager is a transparent background window that can be thought of
as the desktop window for all PEG applications. PegPresentationManager keeps track of
all of the windows and sub-objects present on the display device. In addition,
PegPresentationM anager keeps track of which object has the input focus (i.e. which
object should receive user input such as keyboard input), and which objects are on top of
other objects.

The PegPresentationManager is also responsible for routing keyboard and pen input to
the object with the current focus.

PegDecor atedWindow

Class Name Derived From Styles Signals
PegDecoratedWindow | PegWindow FF_NONE PSF_SIZED
FF_THIN PSF_FOCUS RECEIVED
FF_THICK PSF_FOCUS LOST
PSF KEY_RECEIVED

PegDecoratedWindow is a PegWindow derived class that supports the addition of
common window decorations such as PegTitle, PegMenuBar and PegStatusBar.
PegDecoratedWindow provides functions to facilitate easy access to the decorations
added to the window. PegDecoratedWindow also maintains the actual client area
available after the addition or removal of any of these decorations.

Like all PEG objects, PegDecoratedWindow can also have any other types of child
objects added. Y ou can even nest PegDecoratedWindow objects with themselves,
creating complex and interesting window types.

The following example adds a PegDecoratedWindow that is the same size as your
mainframe:

PegRect Rect;

Rect . Set (MAI NFRAME_LEFT, MAI NFRAME_TOP, MAI NFRAME_RI GHT,
VAl NFRAME_BOTTOM ;

pPr esent ati on- >Add(new PegDecor at edW ndow Rect)) ;

45

CPMainFrame

Class Name Derived From Styles Signals
CPMainFrame PegDecoratedWindow | FF_ NONE PSF SIZED
FF_THIN PSF_FOCUS RECEIVED

FF_THICK PSF_FOCUS LOST
PSF KEY RECEIVED

CPMainFrame is derived from PegDecoratedWindow. It also supports a menu bar,
toolbar and status bar. A CPMainFrame has the ability to handle more than one
CPModuleWindow. Thisincludes updating the menus, toolbar and statusbar depending
on which CPMoudleWindow is active. If you create an add-in with a CPModul eWindow,
you must place it inside of a CPMainFrame.

Here is an example that creates a CPMainFrame that is the size of the mainframe window.
Thisisdone in every example that comes with the SDK in the PegAppl nitialize function:

PegRect Rect;
Rect . Set (MAIl NFRAME_LEFT, MAI NFRAME_TOP, MAI NFRAVE RI GHT,
MAI NFRAME_BOTTOM) ;

CPMai nFrane *mw = new CPMai nFranme(Rect);

CPM oduleWindow

Class Name Derived From Styles Signals
CPModuleWindow | CPWindow FF_NONE PSF_SIZED
FF_THIN PSF_FOCUS RECEIVED
FF_THICK PSF_FOCUS LOST
PSF KEY_RECEIVED

A CPModuleWindow is the base class for windows that represent modules or
applications. When you create an add-in, your main module windows will most likely be
based on a CPModuléWindow. All of the examples that come with the SDK are built
thisway.

A CPModuleWindow can have a menu, toolbar and statusbar. CPModuleWindows are
added to a CPMainFrame, which controls the resizing and swapping of multiple
CPModuleWindows as well as displaying the correct Ul.

Hereis an example of creating a CPModuleWindow and adding it to the top of a
CPMainFrame:

CPMai nFrane *mw = new CPMai nFrame(Rect);
PegRect Chil dRect = mw >Ful | AppRect angl e();
CPModul eW ndow* wi n = new CPModul eW ndow (Chi | dRect, my) ;

46

my >Set TopW ndow(wi n) ;

CPTabbedWindow

Class Name Derived From Styles Signals

CPTabbedWindow | CPWindow FF_NONE PSF_SIZED

PSF_FOCUS_RECEIVED
PSF_FOCUS LOST
PSF KEY RECEIVED

A CPTabbedWindow allows avirtual toolbar that islonger than the physical toolbar.
Thisis helpful when your user interface controls will not al fit on the standard toolbar.
The CPTabbedWindow has two panes each of which can contain PEG controls, such as
buttons, text entry fields, etc. It also has an arrow button that |ets the user tab between
panes.

The following is an example of creating a tabbed window in an object’s AddUI ()
function:

voi d Your Modul e: : AddUI ()

{

}

CPTabbedW ndow* tui = (CPTabbedW ndow*) m ui;
CPW ndow* paneO = tui->CetFirstPane();
CPW ndow* panel = tui->Get SecondPane();

PegRect rr = {1, 1,70, 15};
PegEdi t Box *m eb = new PegEditBox(rr,0, FF_TH N | EF_ED T, NULL, 30);

pane0O-> AddTool barButton (m eb);
PegText Button* b = new PegTextButton(71,1, "dick M",
CLI CKME_|I D, AF_ENABLED| TT_COPY) ;
pane0-> AddTool barButton (b);

b = new PegTextButton(1,1, "Buttonl",
BUTTONL_I D, AF_ENABLED| TT_COPY) ;
panel-> AddTool barButton (b);

b = new PegText Button(40,1, "Button2", BUTTON2_I D,
AF_ENABLED| TT_CCOPY) ;
panel-> AddTool barButton (b);

The result of thiscodeis:

47

[I
| Click Me| b|| [ButtonifEuttonz] 4
] i
PegNotebook
Class Name Derived From Styles Signals
PegNotebook PegWindow FF_RAISED PSF_SIZED
FF_RECESSED PSF_FOCUS RECEIVED

NS TEXTTABS

PSF_FOCUS LOST
PSF_KEY_RECEIVED
PSF PAGE SELECT

PegNotebook is a PegWindow derived class for displaying and using a tabbed-notebook
style control. The notebook can have any number of tabs, and each notebook tab is
associated with a different notebook page. Each notebook page displays any user defined

group of objects.

Each notebook tab can either contain simple text, or any user defined object type. Text
tabs use dightly less memory, while user defined tab decorations can give the notebook
control avery custom appearance. Regardless of tab type, the tabs can be displayed at the
top or bottom of the notebook window.

Constructing and displaying PegNotebook requires the following steps:

e Construct the PegNotebook control, passing the number of notebook tabs and the
style of the notebook tabs. For text-only tabs, include the NS TEXTTABS style.
For custom tabs, do not include the NS TEXTTABS style.

e Populate each notebook tab with either text or custom objects. This determines
what is displayed on each notebook tab.

e Populate each page of the notebook with a user defined window or group. This
determines what will be displayed on each notebook page as the tabs are selected.
There can be only one child object on each notebook page. To display a group of
objects, a container such as a borderless PegWindow must be created to hold the
sub-objects of the page. Thiswindow is then populated with the desired group of
child objects, and set as the notebook client object.

48

The following code adds a PegNotebook with text tabs to a CPModuleWindow:

CPMai nFrane *mw = new CPMai nFrame(Rect);

PegRect Chil dRect = mw >Ful | AppRect angl e();
CPModul eW ndow* swi n = new CPModul eW ndow(Chi | dRect, 0, 0, mw) ;
mv >Set TopW ndow(swi n) ;

PegNot ebook *p = new PegNot ebook(Chi | dRect,
NS_TOPTABS| NS_TEXTTABS, 3) ;

p- >Set TabStri ng(0, (PEGCHAR*)"Tabl");

p- >Set TabString(1, (PEGCHAR*)"Tab2");

p->Set TabString(2, (PEGCHAR*)"Tab3");

swi n- >AddR(p) ;

mw- >Set Mai NW ndow(swi n) ;

The result on the ClassPad is:

[

Tabl [TabZ [Tab3 |

0|

PegM essageWindow

Class Name Derived From | Styles Signals

PegM essageWindow | PegWindow FF_THIN PSF_SIZED
MW_OK PSF_FOCUS RECEIVED
MW_YES PSF_FOCUS LOST
MW_NO PSF_KEY_RECEIVED
MW_ABORT
MW_RETRY
MW _ CANCEL

PegMessageWindow is a popup window class for display warning, error, or other status

information to the user.

The PegMessageWindow class provides a quick way to display information messages.
PegM essageWindow may contain atitle bar, message line, and miscellaneous buttons.
PegM essageWindow supports both modal and non-modal execution. In addition, the
signal generated when the MessageWindow is closed by the user may be directed to any
top-level window.

Modal execution is achieved by calling the MessageWindow Execute() function.
Execute() will add the MessageWindow to PegPresentationManager if the window has
no parent at the time Execute() is called. Execute() will not return until the user selects
one of the MessageWindow option buttons. Execute() will return the ID of the option
button selected to close the MessageWindow.

Several button ID values are reserved by PEG for use with PegM essageWindow (and
PegDialog). These ID values correlate to the common options presented on a message
window. Additional options may be presented by deriving from and extending the

PegM essageWindow class. The buttons included on the message window are specified by
the message window style flags. There is one style flag for each of the pre-defined
message window buttons.

Hereis asimple example of creating a PegM essageWindow:

voi d MyW ndow. : Modal Message(voi d)

{
PegMessageW ndow *pW n = new PegMessageW ndow(" Message W ndow',
"This is a nmessage wi ndow. ", MWV OK| MV CANCEL| MW RETRY) ;

Add(pW n) ;
pW n- >Execut e() ;
}

(I3
[click el b

Message Window [X]

This i= a message window.

| 2k | [Retry | [Cancel]

0|

For the most part PegM essageWindow assumes that your error message will fit on one
line. If you need line-wrapping you should use the following constructor:

PegMessageW ndow(const PEGCHAR *Titl e, const PEGCHAR *Message,

50

const PEGCHAR *Comment, WORD wStyle, WORD wstyl e2,
PegBi t map *plcon, WORD dumyl, MessageW ndowTypeEnum
t ype=ERROR_W NDOW ;

The following example will create a PegM essageWindow with wrapping:

const PEGCHAR* pTitle = (PEGCHAR*) "Title";
const PEGCHAR* pMessage = "Message that is word wapped to the w ndow';
PegMessageW ndow *wi n = new PegMessageW ndow(pTitl e, NULL, pMessage,
MNV OK| FF_THIN, O, NULL, 0, ERROR_W NDOW ;
W n- >Execute();

I
[Click el ¥

Message that iz word
wrapped to the window

|

PegPr ogresswWindow

Class Name Derived From Styles Signals
PegProgresswindow | PegMessageWindow | FF_THIN PSF_SIZED
MW_OK PSF_FOCUS RECEIVED
MW_YES PSF_FOCUS LOST
MW_NO PSF_KEY_RECEIVED
MW_ABORT
MW_RETRY
MW _CANCEL

PegProgressWindow is an extension to PegM essageWindow that adds a progress bar to a
message window. This makes it very easy to create and display a message and progress
bar to the user during along operation.

The progress bar that is a child of the progress window is directly updated by the
application software. The progress window member function Bar () iscalled to retrieve a
pointer to the progress bar when the application determines that the progress bar should
be updated. For more information on the PegProgressBar, see the section Other User
Interface Controls.

51

The progress bar added to a PegProgresswWindow always has a scale of 0 to 100. It isup
to the application software to pre-scale the input value accordingly.

The style of the progress bar displayed in the window client areais passed to the
PegProgressWindow constructor.

voi d Exanpl eW ndow. : Modal Message(voi d)

{
PegPr ogr essW ndow *pW n = new PegProgressW ndow("Wrking....",

"Copying Information...", MNCOK| FF_RAI SED, FF_THI N);
Center(pWn);
Add(pW n) ;
(I3
[click el b

Working. ...

Copwing Information. ..

Sk

IHPUT

0|

CPFrameWindow and CPFrameWindow Derived Windows

Class Name Derived From Styles Signals
CPFrameWindow | PegThing FF_NONE PSF_SIZED
FF_THIN PSF_FOCUS RECEIVED
FF_THICK PSF_FOCUS LOST
PSF KEY RECEIVED

A CPFrameWindow is alightweight window class similar to PegWindow. Becauseit
uses less memory, the CPFrameWindow does not support scrolling. CPFrameWindow
serves as the base class for the windows in the SDK that are not based off of PegWindow.
Like PegWindow, CPFrameWindow also supports viewports.

To add a CPFrameWindow to another window, use the following code:

PegRect Rect = nClient;
CPFrameW ndow *f = new CPFraneW ndow(Rect) ;
Add(f);

52

SCWindow

Class Name Derived From Styles Signals
SCWindow CPFrameWindow | FF_NONE PSF SIZED
FF_THIN PSF_FOCUS RECEIVED
FF_THICK PSF_FOCUS LOST
PSF KEY RECEIVED

SCWindow is an extension of the CPFrameWindow that adds support for events. Instead
of handling user input like pen and keyboard events in the M essage() method,
SCWindow extends handling of events with the following event handlers:

OnL ButtonDownEvent(const SCEvent& e)
OnL ButtonUpEvent(const SCEvent& €)
OnMouseM oveEvent(const SCEvent& €)
OnKeyEvent(const SCEvent& €)
OnExtendedK eyEvent(const SCEvent& €)

These methods are virtual. If you derive a sub-class from SCWindow you can create your
own event handlers. Of course you can still decide to handle these events directly in the
Message method if you'd like. If you handle these events in the Message method then the
event handlers listed above will never be called.

Thetypical usage for SCWindow isto first derive your own CPModuleWindow subclass,
and then create another window class like SCWindow or SCWindowWithMode to sit
inside your CPModuleWindow class. The CPModuleWindow class can manage scrolling
of the SCWindow class while the SCWindow or SCWindowWithM ode class can manage
events or modes.

Hereis an example that creates a SCWindow inside a CPModuleWindow:

SCW ndow *sc = new SCW ndow Rect);
swi n- >Add(sc);

SCWindowWithM ode

Class Name Derived From | Styles Signals
SCWindowWithMode | SCWindow FF_NONE PSF SIZED
FF_THIN PSF_FOCUS RECEIVED
FF_THICK PSF FOCUS LOST
PSF KEY RECEIVED

SCWindowWithMode further extends a SCWindow by adding modes. Modes
encapsul ate the most important events for a given task, allowing you to change the
behavior of eventsin you window at runtime.

53

For example, say that you have two drawing modes: point drawing and line drawing.

The pen down in point drawing mode would create a point at that location. A pen down
in line drawing mode would either mark the end of aline or the beginning of aline. You
can isolate these two pen down events by creating two SCMode classes and using them
with an SCWindowWithMode. Before you begin aline draw, switch the window to the
line drawing mode. Then all events will be handled appropriately. If you change to point
drawing, switch modes to point drawing. To change modes simply pass your SCMode
classto your SCWindowWithMode with this function:

voi d Set Mbde (SChMbde *npde);

MathWindow
Class Name Derived From Styles Signals
MathwWindow SCWindowWithMode/ | FF_ NONE PSF _SIZED

CPUndoThing FF_THIN PSF_FOCUS RECEIVED
FF_THICK PSF_FOCUS _LOST
PSF KEY RECEIVED

MathWindow is a simple window that allows the editing or displaying of 2D math. This
window can be placed anywhere inside a PEG window class, but is normally put inside
an AbstractMathwindow object. MathWindow does not support scrolling. Instead, the
AbstractMathWindow class provides a frame in which the MathwWindow can be
posititioned inside.

The following is an example that creates a MathWindow and places some 2D math
inside:

PegRect rr = {0, 1, 100, 100};

Mat hW ndow *m mat h = new Mat hWndow(rr,1 ,0 ,false ,10 , 10);
m_mat h- >Set Mat hObj ect (CPStri ng_to_Li near Mat hObj ect ("((1/2)"2)"));
AddR(m_mat h) ;

AbstractM athWindow

Class Name Derived From Styles Signals
AbstractMathWindow | CPFrameWindow | FF_NONE PSF SIZED
FF_THIN PSF_FOCUS RECEIVED

FF_THICK PSF_FOCUS LOST
PSF KEY RECEIVED

AbstractMathWindow is an abstract class that provides scrolling or aframe for a
MathWindow. MathWindows are usually placed inside one of the following
AbstractM athwWindows:

e SlidingMathWindow — Does not allow scrolling, but puts the MathwWindow in a
simple frame.

e TabArrowMathWindow - Allows scrolling using small arrow buttons placed in
the window.

e ScrollableMathwWindow - Allows scrolling using PegHScroll, and PegV Scroll
scrollbar classes

We will discuss each of these classes below.

SlidingM athWindow

Class Name Derived From Styles Signals

SlidingMathWindow | AbstractMathWindow | FF_NONE | PSF_SIZED

FF_THIN PSF_FOCUS RECEIVED
PSF_FOCUS LOST
PSF KEY_ RECEIVED

SlidingMathWindow is asimple frame around 2D math. It does not provide scrolling.

PegRect rr = {0, 1, 70, 50};
CPString math = "lim1/x,x,0) + lim1l/x,x,0)";
CLi near Mat hCbj ect Imb = CPString to Li near Mat hObj ect (mat h) ;

Sl i di ngvat hW ndow* mat hO = new Sl i di ngvat hW ndow(rr) ;

mat hO- >Get Mat hW ndow() - >Set Mat hQbj ect (| nD) ;
AddR(mat h0) ;

55

Limn [

fr—+E

=

] + lirn
w3

0|

TabArrowMathWindow

Class Name Derived From Styles Signals

TabArrowMathWindow | SlidingMathWindow | FF_NONE | PSF_SIZED
PSF_FOCUS RECEIVED
PSF_FOCUS LOST

PSF KEY RECEIVED

A TabArrowMathWindow uses small arrows on the left and right sides of the 2D math to
scroll. The creation of a TabArrowWindow is similar to a ScrollableM athWindow:

PegRect rr = {0,1, 70, 50};
CPString math = "lim1/x,x,0) + lim1l/x,x,0)";
CLi near Mat hCbj ect Imb = CPString to_ Li near Mat hObj ect (mat h) ;

TabAr r omvat hW ndow* mat h0O = new TabAr r owivat hW ndow(rr) ;

mat h0- >Get Mat hW ndow() - >Set Mat hQbj ect (| nD) ;
AddR(mat h0) ;

56

i (5)+ o)ram 3]

=—+H

=

] A1

ScrollableM athWindow

Class Name Derived From | Styles Signals
ScrollableMathwindow | PegWindow FF_NONE PSF SIZED
FF_THIN PSF_FOCUS RECEIVED

PSF_FOCUS _LOST
PSF KEY RECEIVED

A ScrollableMathwWindow contains a MathwWindow and allows scrolling using the Peg
horizontal and vertical scrollbars. An example of aMathWindow in a
ScrollableMathwindow follows:

PegRect rr = {0, 1, 70, 50};
CPString math = "lim(1/x,x,0) + lim1l/x,x,0)";
CLi near Mat hCbj ect Imo = CPString_to_Li near Mat hObj ect (mat h);

Scrol | abl eMat hW ndow mat hO = new Scrol | abl eMat hW ndow(rr);
mat hO- >Set Scr ol | Mode(WBM _AUTOSCROLL) ;

mat h0- >Get Mat hW ndow() - >Set Mat hCbj ect (| o) ;

AddR(mat h0) ;

This produces 2D math in a frame with the PEG scrollbars:

57

TextMathWindow

Class Name Derived From Styles Signals
TextMathWindow | MathWindow FF_NONE PSF SIZED
FF_THIN PSF_FOCUS RECEIVED
FF_THICK PSF FOCUS LOST
PSF KEY RECEIVED

TextMathWindow isa MathWindow derived classthat is used to display 2D math. The
window does not allow user input or editing.

PegRect rr = {0, 1, 70, 50};
CPString math = "lim1/x,x,0) + lim1l/x,x,0)";
CLi near Mat hCbj ect Imb = CPString to_ Li near Mat hObj ect (mat h);

Text Mat hW ndow * m = new Text Mat hW ndow (rr);
m >Set Mat hCbj ect (| o) ;

AddR(1) ;

58

lirn [%] + lim
fr—+A w3k

Creating Ul in a CPModuleWindow

Most, if not al, of the applications that you build will extend the CPModuleWindow to
create your application’s main window. Thisis because the CPModuléWindow makes it
easy to create menus, toolbars and a status bar. In this section we will discuss what needs
to be done to create these user interface controls in a CPModuleWindow.

Menus
Struct Name Style Signals
PegM enuDescriptionM L BF_SEPARATOR N/A
BF CHECKABLE
BF_CHECKED
BF DOTABLE
BF DOTTED

To create amenu we must first define amenu description. This description will identify
what items will appear in each drop down menu. The first descriptor we define holds the
names of the main menu headers that will appear across the top of the screen:

PegMenuDescri pti onM. Mai nMenu[] =

{
{“*Menu2”, CWN_ NO ID, 0, AF_ENABLED, SubMenul },
{*Menul”, CWN NO ID, 0, AF _ENABLED, SubMenu2 },
{*”, CMN.NOID, 0, 0, 0}

s

Y ou may notice right away that the order of the menu seems backwards — that Menu2 is
listed before Menul. Thisisthe way that PEG is designed. When the menus appear on
the ClassPad, Menul will be the left most menu. It isalso required that the last entry in a
PegM enuDescriptorML be ablank menu item.

59

Now let’stake a closer look at the parameters in each PegMenuDescriptionML. Thefirst
two parameters decide the text that will appear asthetitle of the menu. If the first value
is defined, then the second value should be CMN_NO _ID. However, if thefirst valueis
NULL, then the second value must be avalid ID into alanguage database (see the section
Multiple Language Support in the ClassPad).

In the above example, the values “Menul” and “Menu2” are hard coded into the menu,
so thereisno need for an ID into alanguage array. This means that regardless of the
current language of the ClassPad these menus will aways have the values “Menul” and
“Menu2’. To make amenu that alows for multiple languages you would define your
menus as.

static PegMenuDescripti onM. Mai nMenu[] =

{
{ NULL, MENU 2, 0, AF_ENABLED, SubMenul },

{ NULL, MENU 1, 0, AF_ENABLED, SubMenu2 },
{ NULL, CW NO ID, 0, 0, NULL }
b

In this case MENU _1 and MENU_2 would have to be defined in alanguage enumeration
that corresponds to an entry in alanguage array.

The third parameter of the descriptor isthe object ID of the menu. ThisID iswhat is
used to create asignal. Since thisisthe top-level menu, we can leave these IDsas 0 to
prevent asignal from being sent. The fourth ID is astyle flag, and the fifth parameter is
the name of the sub menu that will be opened by clicking on this menu.

Submenus are created the same way as main menus. When creating a submenu, be sure
togiveitasigna ID or else you will not be able to respond to a user selection.

PegMenuDescri pti onM. SubMenul[] {

{“I"'mfine.”, CW _NO I D, SUBL_3, AF_ENABLED, NULL },
{“How are you?”, CMN_NOID, SUBl 2, AF_ENABLED, NULL },
‘Hel 1 0", CMN_NO I D, SUBL_1, AF_ENABLED, NULL },

. E“”, CW_NO ID, 0, O, 0}

PegMenuDescri pti onM. SubMenu2[] = {
{“3", CMN_NO SUB2_3, AF_ENABLED, NULL },

I D, B :
{“2”, OW_NOID, SUB2_2, AF_ENABLED, NULL },
{“1”, CW_NOID, SUB2 1, AF_ENABLED, NULL },
{“, |NOTD, 0, 0, 0}

b

Once you have created all of your menus and submenus, you must override the virtual
function GetM enuDescriptionML () in your module. Thisfunction simply returns a
pointer to your main menu descriptor:

PegMenuDescri pti onM.* Your Modul eW ndow: : Get MenuDescri pti onM.()
{

}

return Mai nMenu;

60

Once you have done that, you will have menus! Hereiswhat the menus created above
look like on the ClassPad:

[~ Fenuz [rerul EE
-1 =

| ; ¥ | Hgﬂuare oy’ J
] I'm fine. B

[N)

Toolbars

To add buttons to the toolbar you must override CPM oduleWindow’ s virtual function
AdduUl ().

Hereis asimple toolbar example with two text buttons:

voi d Your W ndow: : AddUI ()

{
PegText Button* b = new PegTextButton(1,1, "Buttonl", BUTTONLl_I D,
AF_ENABLED]| TT_COPY) ;
m ui - >AddTool bar But t on(b) ;
PegText Button* b2 = new PegText Button(35,1, "Button2",
BUTTON2_I D, AF_ENABLED| TT_COPY) ;
m _ui - >AddTool bar But t on(b2) ;
}

Which creates the following on the ClassPad:

61

[% reral reruz
[Euttoni]Euttonz] ¥

0|

As shown in the previous section dealing with windows, there is a CPTabbedWindow
that you can use to give your application atoolbar that is 2 timesaslong. Thisisalso
done inside of the AddUI () function.

Toolbars don't have to be text buttons. They can hold any PegThing derived object,
including PegBitmapButton, CPDropDownButton or PegEditBox.

Status Bar

CPModuleWindow has a protected member of type PegStatusBar* that refersto the
status bar at the bottom of the screen. Y ou can gain access to this variable by using the
GetStatusBar () function.

Once you have the status bar, all you have to do to add to text to it is call the
SetTextField() function:

virtual void SetTextField (WORD wl d, const PEGCHAR *Text);
The first parameter will always be 1, and the second is the text string you wish to display.

Y ou can make a function that controls setting the status bar in your module. For example,
this function would set the status bar to whatever text is passed as a parameter:

voi d Your Modul eW ndow. : Set St at usBar (PEGCHAR* nessage)

{
/1 Get a pointer to the status bar

PegSt at usBar* bar = Get StatusBar();

/1 Set the text
bar - >Set Text Fi el d(1, nessage);

}

Usually you will want to change the status bar after some event or message has occurred.
If thisisthe case, in your overridden M essage() function call the SetStatusBar ()
function after you have received the message that you wish to respond to. For example,

62

the following M essage() function calls SetStatusBar () with the message “ Status:
Everything isOK” on aPM_SHOW message:

SI GNED Your Modul eW ndow: : Message(const PegMessage &Mesq)

{

swi t ch(Mesg. wType)

case PM_SHOW

CPModul eW ndow. : Message(Mesq) ;

Set St at usBar (" St at us:

br eak;

[% Merul MenuZ

|Buttnn1 |Buttu:un2|

Status:Ewverything is Ok]

Buttons

Everything is OK');

PEG and the SDK provide several types of buttons that you can add to your application.
We will now go through each one providing examples on how to create the button, and a
screenshot of what the button looks like on the ClassPad.

Note: In most of these cases there is more than one constructor for each class. Refer to
the ClassPad 300 SDK Reference Guide to see details on all available constructors.

PegButton

Class Name Derived From Styles Signals

PegButton PegThing FF_NONE PSF_SIZED
FF_THIN PSF_FOCUS RECEIVED
FF_THICK PSF_FOCUS LOST
BF_REPEAT PSF_KEY_RECEIVED

BF_ DOWNACTION

PSF_CLICKED

63

PegButton serves as the base class for nearly all PEG button style objects. PegButton
providesthe BF_REPEAT timer operation, default frame drawing, and default selection
SIGNALS. Y ou would not normally create an instance of PegButton in your application,
however PegButton is very useful as abase class for your own custom button styles.

PegTextButton
Class Name Derived From | Styles Signals
PegTextButton PegButton AF_ENABLED PSF_SIZED
FF_NONE PSF_FOCUS RECEIVED
FF THIN PSF FOCUS LOST
BF_REPEAT PSF_KEY_RECEIVED
BF DOWNACTION | PSF_CLICKED
TT_COPY
TJ RIGHT
TJ LEFT
TJ CENTER

PegTextButton is simply a button with user-defined text. The text string displayed on the
button face is vertically centered over button client area, and may be horizontally justified
in different ways using the text justification style flags.

A PegButton sends the signal PSF_CLICKED whenit is clicked.

The following is an example of creating a PegTextButton. The first two parameters give
the left and top justification respectively.

PegText Button *button = new PegTextButton(2, 2, "Button");
AddR(but t on);

[
|

|

PegBitmapButton

Class Name Derived From | Styles Signals

PegBitmapButton | PegButton AF ENABLED PSF SIZED

BF_REPEAT PSF_FOCUS_RECEIVED
BF_DOWNACTION | PSF_FOCUS LOST
PSF_KEY_RECEIVED
PSF_CLICKED

PEG also allows for a button to display an image instead of text. These buttons support
the standard border frames, but the text style flags do no apply. A PegBitmapButton also
sends the signal PSF_CLICKED.

To create a PegBitmapButton you must first create an image and define a PegBitmap that
represents thisimage. Creating a PegBitmap for a button is simple with the help of the
Bitmap Converter tool, accessible under the Tools menu.

First, create a bitmap in your favorite image-editing program. When you save thefile,
make surethat theimage is monochrome. Since the ClassPad is monochrome, only
monochrome bitmaps will work. In this example, we will use the following bitmap
named smile.omp: L2

Next, open the BMP Converter tool. Browse to your bitmap image and type in the name
of the output C++ file you wish to create. The C++ file will contain the byte datafor the
bitmap and create a PegBitmap. Press the convert button and add the output file to your
add-in project. Open thefile and you will see that a PegBitmap called gbsmileBitmap
was created.

Finally, go back to the window class where you would like to add this button. At the top
of the file declare an extern to the name of your bitmap:

extern PegBitmap gbsni | eBit map;

Then, create your PegBitmapButton like this:

PegBi t mapButt on *button = new PegBi tmapButton(2, 2, & gbsm | eBitmap);
AddR(but t on) ;

Here isthe result on the ClassPad:

65

|
PegCheckBox
Class Name Derived From Styles Signals
PegCheckBox PegButton BF REPEAT PSF SIZED
BF DOWNACTION | PSF_ FOCUS RECEIVED
BF_SELECTED PSF_FOCUS LOST
AF _ENABLED PSF KEY_RECEIVED

PSF_CHECK_ON
PSF CHECK_OFF

PEG also supports the creation of text-labeled checkboxes. Creating a checkbox isvery
similar to creating a button:

PegCheckBox *box = new PegCheckBox(2, 2,

AddR(box) ;

[

[

||

OCheck this out!

ECheck this out!

0|

0|

"Check this out!");

A checkbox sends the signals PSF. CHECK _ON when selected, and PSF. CHECK _OFF
when de-selected. Checkboxes support the BF_SELECTED and AF_ENABLED styles.

66

PegRadioButton

Class Name Derived From Styles Signals
PegRadioButton | PegButton/ BF REPEAT PSF SIZED
PegTextThing | BF_DOWNACTION | PSF_FOCUS RECEIVED
BF_SELECTED PSF_FOCUS LOST
AF_ENABLED PSF_KEY_RECEIVED
PSF_ DOT_ON
PSF DOT_OFF

PegRadioButton provides a mutually exclusive selection indicator. When a
PegRadioButton is selected by the user, it finds all sibling radio buttons and de-selects
them. Therefore, in order to allow more than one radio-button to be selected on asingle
window or dialog you must group the buttons into separate containers or parents. Placing
aradio button in atransparent PegThing is one way to accomplish this.

For example, look at the following code:

PegRadi oButton *bl = new PegRadi oButton(2, 2, "Choice 1");
AddR(bl);

PegRadi oButton *b2 = new PegRadi oButton(2, 15, "Choice 2");
AddR(b2);

PegRect r;

r = nClient;

PegThi ng *cont ai ner = new PegThi ng(r);

PegRadi oButt on *b3 = new PegRadi oButton(2, 32, "Choice 3");

cont ai ner - >Add(b3) ;

AddR(cont ai ner);

b1 and b2 will be mutually exclusive because they are both children of this class. b3, on
the other hand, has been placed in a different container, and has that container asits
parent. Therefore, its selection will not have any effect on bl or b2:

[A [
| | | 5| | >
D Choice 1 ®Choice 1 D Choice 1
OChoice 2 CChoice 2 ®Choice 2
®Choice 3 ®Choice 3 ®Choice 3
| cm| |

67

PegRadioButtons support the style flags AF_ ENABLED and BF_SELECTED. They
send the PSF_DOT_ON and PSF_DOT_OFF signals.

CPDropDownButton
Class Name Derived From Styles Signals
CPDropDownButton | PegBitmapButton | BF_ REPEAT PSF_SIZED
BF DOWNACTION | PSF_FOCUS RECEIVED
BF_SELECTED PSF_FOCUS LOST
AF_ENABLED PSF_KEY_RECEIVED
PSF_CLICKED

CPDropDownButtons are used by many applications on the ClassPad. They allow a user
to select an item from alist of bitmap buttons. For example, the tool selection dropdown
in the Geometry toolbar is a CPDropDownButton.

Much like the menus that we looked at before, CPDropDownButtons have a descriptor to
define what items it will include. Hereis an example of a descriptor:

struct CPMultiButtonDescription buttons[] =

{&gbsmi | eBi t map, SM LE | O},

{ &gbcont ent Bi t nap, CONTENT _I DO},
{ &gbsadBi t map, SAD | D},

{ NULL, NULL},

}s

Each entry in a CPMultiButtonDescriptor defines a button that will be in the drop down
list. Each button must define the PegBitmap that it will display and its Object ID. The
last entry inthelistisapair of NULLS.

Hereis an example of creating a CPDropDownButton in the AddUI function of a module
window with the buttong[] descriptor:

voi d YOURW NDOW : AddUI ()

{
PegRect r = Get Tool barButtonRect ();

CPDr opDownBut t on *button = new CPDr opDownButton(r, buttons);
m_ui - >AddTool bar Butt on(but t on) ;

}
The result is a dropdown button with three bitmap buttons. Selecting one button makes it

visible and closes the dropdown.

68

v Ea v
(Lt] Ea |~ | »
|I II
T
]] |
CPMultiButton
Class Name Derived From Styles Signals
CPMultiButton | PegBitmapButton | BF_REPEAT PSF_SIZED
BF_DOWNACTION | PSF_FOCUS RECEIVED
BF_SELECTED PSF_FOCUS LOST
AF_ENABLED PSF_KEY_RECEIVED
PSF CLICKED

A CPMultiButton is very similar to a CPDropDownButton. With a CPMultiButton, the
bitmaps are cycled through instead of being chosen from a drop down. The bold button
in eActivity is an example of a CPMultiButton.

To create a CPMultiButton, you first make a CPMultiButtonDescription:

struct CPMultiButtonDescription buttons[] =
{

{ &gbsmi | eBi t map, SM LE | O},

{ &gbcont ent Bi t nap, CONTENT | D},
{ &gbsadBi t map, SAD | D},

{ NULL, NULL},

1
This button is also mostly used in toolbars, so we will add it in the AddUI function:

voi d YOURW NDOW : AddUI ()

{
PegRect r = Cet Tool barButtonRect ();
CPMuUl tiButton *button = new CPMul tiButton(r,
m _ui - >AddTool bar But t on(but t on) ;

buttons);

}

Each of the following screenshots is taken after the button was clicked. Notice that the
images are being cycled through on each click:

69

(¥ [d
|| 1 I B |I 1 I Py |I 1 I ¥
| cm| |

CPToggleButton

Class Name Derived From Styles Signals

CPDropDownButton | PegBitmapButton | BF_ REPEAT PSF_SIZED
BF DOWNACTION | PSF_FOCUS RECEIVED
BF_SELECTED PSF_FOCUS LOST
AF_ENABLED PSF_KEY_RECEIVED

PSF_CLICKED

CPToggleButton implements a two state PegBitmapButton that can be selected or
unselected. When selected, the PegBitmap isinversed. Hereisthe codeto create a
simple example:

voi d MCSW ndow: : AddUI ()

{
PegRect r = Get Tool barButtonRect ();

CPToggl eButton *button = new CPToggl eButton(r, &gbcontentBitmap);
m_ui - >AddTool bar But t on(but t on);

}

The first image below is when the button has not been clicked. The second is after a
click and the image has been inverted.

70

<!
-9

Text Controls

PEG also provides severa options for displaying text to the user as well asretrieving text
input from the user. This section will show you how to create each of these text controls.

Note: In most of these cases there is more than one constructor for each object. Refer to
the ClassPad 300 SDK Reference Guide to see details on al available constructors.

PegPrompt

Class Name Derived From Styles Signals

PegPrompt PegThing/ FF_NONE PSF_SIZED

PegTextThing FF_THIN PSF_FOCUS RECEIVED

TJ RIGHT PSF_FOCUS LOST
TJ LEFT PSF_KEY_RECEIVED
TJ CENTER PSF_CLICKED
TT_COPY
AF_TRANSPARENT
AF ENABLED

PegPrompt is atext display object. PegPrompt can be drawn with several different border
styles, and can be updated dynamically for interactive updates or real-time information
display. PegPrompt does not support user editing.

PegPrompt will by default send PSF_CLICKED signalsto its parent object if the prompt
ID is non-zero. By default PegPrompt objects cannot be selected, and do not send signals.

The following code demonstrates how to create a PegPrompt:

PegPrompt *pp = new PegPronpt (2, 0, "Hello everybody");
AddR(pp) ;

Which simply adds the given text to your window:

71

[

Hello ewverwbody

0|

Be aware that if you do not passin a static string to a PegPrompt, you should set the style
flag TT_COPY. This causes PegPrompt to keep a copy of the string you passin, so even
if the string becomes invalid the PegPrompt will still have its own copy.

PegString

Class Name Derived From Styles Signals

PegString PegThing/ FF_NONE PSF_SIZED

PegTextThing FF_THIN PSF_FOCUS RECEIVED

TT_COPY PSF_FOCUS LOST
AF _TRANSPARENT | PSF_KEY_RECEIVED
AF_ENABLED PSF TEXT_SELECT
EF_EDIT PSF TEXT_EDIT

PSF_TEXT_EDITDONE

PegString is a user-editable graphical string object. In addition to the common signals
defined by PegThing, PegString also supports the signals listed above.

Hereis an example of how to create a PegString:

PegString *p = new PegString(2, 2,
AddR(p) ;

p = new PegString(2, 25, 125);

AddR(p) ;

"Hel |l o everybody");

72

[
[b

I |

]

CPPegString

Class Name Derived From Styles Signals

CPPegString PegString/ FF_NONE PSF_SIZED

CPUndoThing FF_THIN PSF_FOCUS RECEIVED

TT_COPY PSF_FOCUS LOST
AF_TRANSPARENT | PSF_KEY_RECEIVED
AF_ENABLED PSF TEXT SELECT
EF EDIT PSF TEXT_EDIT

PSF_TEXT_EDITDONE

A CPPegString is a subclass of PegString. It has advanced features not available in
PegString such as drag and drop, cut and paste and undo. The constructor to create a
CPPegString can take the exact same parameters as our last example:

PegRect r = nReal ;
CPPegString *p = new CPPegString(2, 2, "Hello everybody");
AddR(p) ;

p = new CPPegString(2, 25, 125);
AddR(p) ;

73

[
[b

I |

]
PegTextBox
Class Name Derived From Styles Signals
PegTextBox PegWindow/ FF_NONE PSF_SIZED
PegTextThing FF_THIN PSF_FOCUS RECEIVED
FF THICK PSF FOCUS LOST
EF WRAP PSF_KEY_RECEIVED
TT_COPY
TJ RIGHT
TJ LEFT
TJ CENTER

PegTextBox isamulti-line text display control that does not support editing. By default,
PegTextBox left-justifies the displayed text. Center-justification is also supported. Lines
of text that are too long to fit in the client width of the textbox are also wrapped by
default to use two or more lines. Thisis controlled by the EF. WRAP style flag. The
wrapping algorithm searches for whitespace, comma, or hyphen characters as logical
points to break long lines. If a suitable breaking point is not found, PegTextBox simply
breaks aline at the last character which fits within the client width area.

Hereis an example of a centered text box with some default text inside:

PegRect r = nReal ;
r.wBottom = r.wBottom 2;

PegText Box *p = new PegText Box(r, 0, FF_RECESSED| EF WRAP| TJ_CENTER,
"This is a long string.\nWll, it isn't that long.\nBut if we add
themall up.\n.\n.\nlt gets long");

Add(p);

74

[

¥

It get=s long

This i= a long =tring.
Well, it i=n't that long.
But if we add them all up.

0|

If astring islong enough to require scroll bars, they can be added to the textbox by

calling:

p- >Set Scr ol | Mode(WBM_AUTOSCROLL) ;

If you would like the textbox to have scroll bars, make sure that you create the textbox
with the style flag EF_EDIT. While thiswill not allow a user to edit the text inside the
textbox, but it will allow the user to scroll the text.

PegEditBox

Class Name Derived From Styles Signals

PegEditBox PegTextBox FF_NONE PSF_SIZED
FF_THIN PSF_FOCUS RECEIVED
FF_THICK PSF_FOCUS LOST
EF_ WRAP PSF_KEY_RECEIVED
TT_COPY PSF TEXT_SELECT
TJ RIGHT PSF TEXT_EDIT
TJ LEFT PSF_TEXT_EDITDONE
TJ CENTER

PegEditBox isamulti-line text display control that allows full user editing via pen and
keyboard. A PegEditBox cannot be center justified.

Hereis an example of how to create a PegEditBox:

PegRect r
r.wBottom = r.wBottom 2;

= nmReal ;

PegEdi t Box *p = new PegEdi t Box(r);

Add(p);

75

[

User Editable Textill]

]
CPEditBox
Class Name Derived From Styles Signals
CPEditBox PegEditBox/ FF_NONE PSF_SIZED
CPUndoThing FF_THIN PSF_FOCUS RECEIVED
FF THICK PSF FOCUS LOST
EF WRAP PSF_KEY_RECEIVED
TT_COPY PSF TEXT SELECT
TJ RIGHT PSF TEXT_EDIT
TJ LEFT PSF_TEXT_EDITDONE
TJ CENTER

CPEditBox is a subclass of PegEditBox that supports drag and drop, copy and paste and
undo. The constructor takes the same parameters as a PegEditBox.

(%

User Editable Texti!!
Thi= one is dragable...

76

Other User Interface Controls

PEG has several other user interface controls that can be used to display information to
the user or gather information from the user.

PegList

Class Name Derived From Styles Signals

PegList PegWindow FF_NONE PSF_SIZED
FF_THIN PSF_FOCUS _RECEIVED
FF_THICK PSF_FOCUS LOST

LS WRAP _SELECT | PSF_KEY_RECEIVED
PSF LIST SELECT

PegList isacontainer class that serves as abase class for PegVertList, PegHorzList, and
PegComboBox. PegList positions child objects so that they are stacked left to right or top
to bottom. Y ou would not normally create an instance of PegList in your application, but
instead use PegVertList, PegHorzList or PegComboBoxX.

PegList isasubclass of PegWindow, and enables scrolling in the same way; viathe
Set ScrolIM ode() function.

The three PegList derived controls that we are going to look at all accept PegPrompts as
itemsinthelist.

PegVertList / PegHorzList

Class Name Derived From | Styles Signals
PegVertList/ PegList FF_NONE PSF_SIZED
PegHorzList FF_THIN PSF_FOCUS RECEIVED
FF THICK PSF_FOCUS _LOST
LS WRAP_SELECT | PSF_KEY_RECEIVED
PSF LIST SELECT

PegVertLists and PegHorzL ists create vertical and horizontal lists respectively. You can
use the functions Add() or AddToEnd() to add PegPrompts to your list. Both
PegVertList and PegHorzList manage the position and size of the itemsin the list, so you
do not need to concern yourself about position when creating your PegPrompts.

When creating the PegPrompts to insert into a PegList, you should make sure that the
AF_ENABLED flag is set. Without it, you will not be able to select the PegPrompt in
your list.

Let’'slook at how a PegVertList is created:

PegRect r = nReal ;
r.wBottom = r.wBottoni3;
PegVertList *list = new PegVertList(r);

77

/1 Set Scrolling just |ike a PegW ndow
list->SetScroll Mbde(WM AUTOVSCROLL) ;

PegPrompt *pp;
pp = new PegPronpt (0, 0, "Hello everybody", O,

FF_NONE| TJ_LEFT| AF_ENABLED| TT_COPY) ;
list->AddToEnd(pp);

pp = new PegPronpt(0, O, "Hello again", O,
FF_NONE| TJ_LEFT| AF_ENABLED| TT_CCOPY) ;
list->AddToEnd(pp);

pp = new PegPronpt (0, 0, "How are you?", O,
FF_NONE| TJ_LEFT| AF_ENABLED| TT_CCPY) ;
[ist->AddToEnd(pp);

pp = new PegPronpt (0, 0, "Goodhye", O,
FF_NONE| TJ_LEFT| AF_ENABLED| TT_COPY) ;
[ist->AddToEnd(pp);

pp = new PegPronpt(0, 0, "Bye-Bye", O,
FF_NONE| TJ_LEFT| AF_ENABLED| TT_COPY) ;
list->AddToEnd(pp);

Notice that the PegVertList’s scroll mode is set in the same way that a PegWindow’sis
set. We mentioned before the list manages the position of the PegPrompts. In this
example even though all PegPrompts are created at the same location, when they are
placed in athe list they will be arranged correctly:

(%

Hello ewerwbody
Hella again

Hows are wou?
Goodbywe

| =Y | =Y

]| K

0|

On selection, the list sends PSF_LIST_SELECT signals to the parent object.

PegComboBox

Class Name Derived From Styles Signals

PegComboBox PegVList FF_NONE PSF_SIZED
FF_THIN PSF_FOCUS RECEIVED
FF_THICK PSF_FOCUS LOST

78

PSF_KEY_RECEIVED
PSF LIST SELECT

PegComboBox is similar to (and derived from) PegVList. PegComboBox adds the
concept of "Opening and Closing”, which can conserve space when alarge number of
items are added to the combo box. A drop-down arrow is provided to open the combo
box. The box closes when an item is selected or the combo box |oses focus.

PegComboBox will send the signal PSF_LIST_SELECT to the parent window if the
PegComboBox has a non-zero ID value and the selected child also has anon-zero ID
value.

The following example creates a PegComboBox and populatesiit:

PegRect ListRect;
Li stRect.Set(2, 2, 90, 150);
PegConboBox *pLi st = new PegComboBox(Li stRect);

for (int iLoop = 20; iLoop > 0; ilLoop--)
{
CP_CHAR cTenpl[20] ;
CP_StringCopy(cTenp, (CP_CHAR*)"Select ");

CP_CHAR nTenpl[10];
CP_IntToString(iLoop, nTenp);

CP_StringCat (cTenmp, nTenp);
pLi st - >Add(new PegPronpt (0, 0, (PEGCHAR*)cTenp, iLoop,
FF_NONE| TJ_LEFT| AF_ENABLED| TT_COPY)) ;
}
pLi st ->Set Scr ol | Mode(WBM _VSCROLL) ;
pLi st - >Set Sel ect ed(5) ;
AddR(pLi st);

The result of thiscodeis:
[[
| o | 5

Selectd
Selectl
Select?
Selectd
Selectd
Selectd

QE

SelectT
Selectd
Selectd
Selectlf
Selectll
Selectl2
Selectll
Selectld
Selectls

79

PegSpinButton

Class Name Derived From Styles Signals

PegSpinButton PegThing SB_VERTICAL | PSF_SIZED

PSF_FOCUS RECEIVED
PSF_FOCUS LOST
PSF_KEY_RECEIVED
PSF_SPIN_MORE
PSF_SPIN_LESS

PegSpinButton is a thumbwheel style control that is normally used to adjust a numeric
value displayed in an adjacent object. PegSpinButton objects can be horizontal or vertical
in orientation.

There are two forms of PegSpinButton. The first form is created when the spin button has
a'buddy’ object. A buddy object is a PegTextThing derived object that is automatically
updated as the spin button is manipulated by the end user. The second form of
PegSpinButton has no buddy object, and therefore reports spin button selection to the
parent window for application level processing.

When a spin button has a buddy object, that object should be designed to display a
numeric value. When the spin button is operated by the end user, the spin button will first
convert the buddy object string to an integer, then increment or decrement the integer
value as required, and then convert the integer value back to a string for assignment to the
buddy object.

The buddy object, if any, isrequired to have TT_COPY style. Thisisrequired because
the string value assigned to the buddy object is dynamically constructed. If the buddy
object doesnot have TT_COPY style, this style is added automatically by the spin button
object.

The following example creates a PegPrompt that is used as the buddy for the
PegSpinButton. The PegSpinButton has a min of 20 and a max of 80 with an increment
of 5.

PegRect Chil dRect;

Chi |l dRect . Set (20, 20, 100, 40);

PegPronpt *pPronpt = new PegPronpt (Chil dRect, "20", O,
FF_RECESSED| TJ_RI GHT| TT_COPY) ;

AddR(pPronpt) ;

/1 set the spin button position to the right of the pronpt:
Chi | dRect . wLeft = pPronpt->nReal . wRi ght + 1;
Chi | dRect. wRi ght = Chi |l dRect.wLeft + PEG SCROLL_W DTH;

//Create the SpinButton with pPronpt as the buddy. 20 as the nmin, 80
/las the max and 5 as the increnment val ue
PegSpi nButton *pSpin = new PegSpi nButton(Chil dRect,
pPronpt, 20, 80, 5, SB VERTICAL);
AddR(pSpi n) ;

80

|
PegProgressBar
Class Name Derived From | Styles Signals
PegProgressButton | PegThing FF_NONE PSF_SIZED

FF_THIN PSF_FOCUS_RECEIVED
PS SHOW VAL | PSF_FOCUS LOST
PS RECESSED | PSF_KEY_RECEIVED
PS LED

PS VERTICAL
PS PERCENT

PegProgressBar is a simple progress bar control used to indicate to an end user the
completion status of a slow activity. PegProgressBar can assume any scale value within
the range of the SIGNED data type, however it ismost common to display avaluethat is
a percentage of the completion status.

The style, range, and initial value of a PegProgressBar object are passed to the object
constructor. As the operation being monitored progresses, the application software cals
the Update() member function to change the displayed completion value.

While you can create any number of PegProgessBar instances directly, it is more
common to use the PegProgresswWindow class, as thisis a simpler method of creating and
displaying a progress indicator to the end user.

The following example creates a PegProgressBar which gets updated during the Task()
function:

voi d ProgressW ndow:. : Cr eat eProgressBar ()
{

PegRect r = nClient;

r.wLeft += 2;

r.wki ght -= 5;

r.wBottom = 30;

81

r.wlop = 5;
bar = new PegProgressBar(r, FF_TH N PS_SHOW VAL| PS_PERCENT) ;

AddR(bar) ;
}
voi d ProgressW ndow: : Task()
{
for(int i=1;i<10000001;i ++)
{
for(int j=0;j<100;j++);
i f(i%l00000 == 0)
{
bar - >Updat e(i / 100000) ;
}
}
}

In this example Task() could be called from a user event, like clicking on a button. Here
is a screenshot where atoolbar button starts Task():

[[K3
[52] | #]| (5e] B

i

]]]

For more information, including a complete list of constructors and member functions for
each control class, see the ClassPad 300 SDK Reference Guide.

82

Using Floating-Point Values with the ClassPad

The ClassPad does not support the use of double datatypes. Instead, the ClassPad has a
native representation of doubles called BCD.

There are two types of BCDs. OBCD and CBCD. OBCD is used to represent real
numbers, whereas CBCD is used to represent complex numbers. We will look at using
OBCD numbersfirst and then look at CBCD numbers.

OBCD Data Structure

The structure of an OBCD is defined as:

typedef struct obcd_ {
unsi gned char mantissa[IM CAL INDIG T];
unsi gned short exponenti al

} OBCD_;

t ypedef uni on obcd {

OBCD_ obcdi;

unsi gned | ong dunmy| 3] ;
} OBCD;

The mantissa of a number is stored in obcdl.mantissa. The mantissais 10 bytes long,
with the least significant 2 bytes reserved for system use. The most significant nibbleis
reserved for aflag. Thereisalso a2 byte exponent that is stored in ashort. The entire
structure looks like this:

eF [1]2]3]4]5]6]7]8][9]10]11]12]13]14[15|16[17]18][19|eS|el|e2] €3

Flag Mantissa reserved Exponent

OBCD Flag

The most significant nibble of the mantissaisreserved for aflag. When thisflag is non-
zero it meansthere is a non-numeric value in the OBCD. The possible values for the flag
and the meaning are described in the following table:

—h

ag Meaning

Thereisadecima value in mantissa

Infinity if the exponent is 0x1000 or negative infinity is the exponent is 0x6000

The value is undefined

True

False

S O~ O

Error

Here are some examples of OBCD values that have the flag set to a value other than 0.

83

Positive Infinity:

eF|1]/2|3|4|5]|6|7|8[9|10|11|12|13|14|15|16|17|18|19|eS|el | e2 | e3
4]/olo|lolojo|lo|ojo|lo|lO [0 |O |O |O |O |O|O]|O O |1 |0 |O O
Negative Infinity:

eF [1(2|3|4|5|6|7|8|9[10|11|12{13|14|15|16|17|18|19|eS|el|e2 | e3
4 |ojlo|lojo|o|o|o|j0|O]|O |0 |O |O|O |O|O|O O |O |6 |0]0I]|O
True:

eF [1(2|3|4|5|6|7[8|9[10|11|12|13|14|15|16|17|18|19|eS|el|e2 | e3
9 |ojlo|o|jo|o|lo|o|0O|O|O |0 |O |O|O |O|O|O O]|O |1 |0]|O|O
Overflow Error:

eF [1]|2|3[4|5]6|7[8|9]10|11|12]13|14]15]|16|17[18|19|eS|el|e2 | e3
F |ololo|lo|o|o|o|o|o|O |O |0 |O O]|O|O|O|O O J|O|O/|O]IF

Asyou can seein the case of infinity or an error, you must inspect the low byte of the
exponent for more information about the value. When dealing with infinity these bytes
will tell you whether the infinity is positive or negative. We will discussthisin detail in
the exponent portion of this section.

If the flag represents an error, the exponent byte tells you which error has occurred. The
followingisalist of all possible error values and the corresponding error:

Valuein Exponent | Error

0x0000 Norm (Normal — no error)

0x0001 Acbreak

0x0002 Syntax ERROR (Syntax error)
0x0003 Undefined

0x0004 Memory ERROR (Memory error)
0x0005 Go ERROR (Jump error)

0x0006 Nesting ERROR (Nesting error)
0x0007 Stack ERROR

0x0008 Argument ERROR (Argument error)
0x0009 Dimension ERROR (Dimension error)
0x000a Com ERROR (Send and receive error)
0x000b Transmit ERROR (Transmission error)
0x000c Receive ERROR (Reception error)
0x000d Memory Full

0x000e Undefined

0x000f Overflow ERROR

0x0010 Domain ERROR (Input range error)
0x0011 Non-Real ERROR

0x0012 No Solution (There is no solution)
0x0013 Mismatch

0x0014 No Variable

0x0015 Not Found

0x0016 Application ERROR

0x0017 System ERROR

0x0018 Already Exists

0x0019 Complex Number In List
0x001a Complex Number In Mat
0x001b Can't Solve (There is no solution)
0x001c Range ERROR

0x001d Iteration ERROR

0x001e Condition ERROR

0x001f NULL

The Mantissa

The remaining space in the mantissais used to hold the value of your number.
Remember that the flag is actually part of the mantissa, and there are 2 bytes of reserved
data at the end.

The view of the mantissa:

eF [1]2[3]4]5]6]7]8]9]10]11]12]13]14[15]16]17]18]19

FLAG Mantissa value Reserved

The value stored in the mantissais the value of the number you want to store without any
representation of a decimal point. This means that the numbers 1.75 and 175 both have a
mantissa of 175. The distinction isin each number’s exponent.

Be aware that the mantissais left justified — meaning that the first significant digit always
followstheflag. In other words your mantissa cannot have leading zeroes.

The Exponent

The exponent portion of an OBCD defines where the decimal point will be. The
exponent is stored in 2 bytes as follows:

eS el | e2 | e3

Sign Bit Exponent Value

The sign bit determines the sign of the mantissa and the exponent. Exponents have a
range of —999 to 999.

All OBCDs calculate the exponent value as if there were a decimal point right after the
most significant digit of the mantissa. That is, the values are stored in aform similar to
scientific notation.

How you calculate the value of the OBCD’ s exponent depends on whether the value you
want to store is positive or negative. If you have a positive number, add the value of the
exponent to 1000 to get its value. If you have a negative number, add the value of the
exponent to 6000 to get the exponent.

85

For example, let’s say you want to store 1750. The value of the mantissawill be 1750.
But remember we must cal culate the exponent asif 1.750 is actually stored in the
mantissa. Therefore the exponent needs to be 10n3 (because 1.75 * 103 = 1750). Since
1750 is positive the OBCD’ s exponent starts at 1000. We then add the exponent value
(3) to get:

1000 + 3 =1003

which means that our exponent has the value of 1003.

The OBCD representation of 1750

ek [1]2]3[4|5]6|7]8]9/10|11]12]13]14|15]|16|17|18|19|eS|el|e2
0 |1)7|/5|]0]0/0/0]O0O]|0O]O0 |O |O |O]O|]O|O O]|O]O |1 |O]O

Now let’stry —0.0065. The mantissawill be 65, so we need the exponent to be —10"-3
(6.5* -10"-3 =-0.0065). Since our value is negative this time we need to add to 6000.
So the value of the exponent is:

6000 + (-3) = 5997

The OBCD representation of —<0.0065

eF [1]2|3]|4|5]|6|7[8|9]10|11]12|13|14|15|16|17|18|19|eS|el | €2
0 |6/5/0/0|0O|O]|O|O]O]JO |O |O O |O O O]O|O O [51]9]9

Finally, let’slook at the value 2.25. Thiswill be stored in the mantissaas 225. The value
we want for an exponent is 10M0 since 2.25 * 1070 = 2.25. Again, our number is positive
so we add to 1000: 1000 + 0 = 1000. So the representation of 2.25is:

The OBCD representation of 2.25

eF |1]2|3[4|5]|6|7[8|9]10|11]12]13|14|15|16|17|18|19|eS| el

i
i

0 |2|/2|5]|]0]0)/0|j0O0j0O]O]O |[O]|]O |O O |O]O |O O |O |1 |0

Here are some more exampl es that of exponents and their OBCD representation:

Exponent Value | eS el e2 €3
0 0 0 0 0
10"-999 0 0 0 1
1001 0 9 9 9
10M0 1 0 0 0
10M 1 0 0 1
-10M 6 0 0 1
-10M-1 5 9 9 9

Setting the Value of an OBCD

To assign avalue to an OBCD number there are several functions that you can use. The
first three we will look at will look at can be used to set an OBCD to a whole number:

word Cal _setn_OBC(word wx, OBCD * X);
word Cal _shortto_OBC(short wx, OBCD * x);
word Cal | ongto OBC(long wx, OBCD * Xx);

86

@R

&

These functions place aword (unsigned short), short, and along into an OBCD
respectively. Hereisan exampleusing Ca_setn_ OBC:

OBCD x;
Cal _setn_OBC(5, &x); //sets x to the value 5

Since this function takes an unsigned short we cannot set the value to a negative number.
We would have to use the Cal_minus_OBC function as follows:

OBCD x;
Cal _setn_OBC(5, &x); //sets x to the value 5
Cal _m nus_OBC(&) ; //sets x to the value -5

We could also use the Cal_shortto OBC or Cal_longto_OBC function to set a negative
value:

OBCD x;

OBCD vy;

Cal _shortto OBC(-5, &x); //sets x to the value -5

Cal | ongto_OBC(-155, &y); /lsets y to the value -155

When dealing with whole numbers, you do not need to worry about exponents as long as
you use these functions to set the values. The functions will set the exponent value
automatically.

Aswe mentioned in the OBCD Data Structure section, to create a floating-point OBCD
we must change the OBCD’ s exponent value. To do this, we will explicitly set the
exponent to the appropriate hex value.

Let’swalk through setting the exponent for the value 205.5. First use the function
Cal_longto_OBC to set the OBCD to 2055:

GBCD x;
Cal _| ongt o_0OBC(2055, &x);

We want to set the exponent to 10"2 so the number becomes 2.055 * 10"2 = 205.5.
Since 205.5 is positive, add the exponent value to 1000: 1000 + 2 = 1002. So the
exponential valueis 1002. Y ou can set the exponent with the following code:

X. obcdl. exponenti al =0x1002;

x now holds the value 205.5. To make the mantissa negative, we would have set the
exponent to 6002 (6000 + 2 = 6002):

Xx.obcdl. exponenti al =0x6002; // 2.055 * -10"2 = -205.5

Here are some more examples of setting exponent values:

OBCD x;

87

Cal | ongto_OBC(523, &x);

X. obcdl. exponenti al 0x1120; // changes the value to 5.23e120

X. obcdl. exponenti al 0x6004; // changes the value to -52300

X. obcdl. exponenti al 0x5996; // changes the value to -0.000523

Y ou can also create an OBCD by explicitly setting all 20 bytes of the mantissaas well as
the 2 bytes of the exponent. Thisis helpful when you need to define a constant OBCD.
Remember that even though it looks like the mantissa is starting with aleading zero, this
isactually the flag nibble. Thefirst digit of the number is the second nibble and cannot
be zero. Also thelast 2 bytes of the mantissa should be set to 0x00 0x00.

const OBCD Pl = {{{0x03, Ox14, 0x15, 0x92, 0x65, 0x35, O0x89, 0x79, 0x00,
0x00}, 0x1000}};

const R sqrt2by2 INIT {{{0x07, 0x07, 0x10, Ox67, Ox81, O0x18, O0x65, O0x47,
0x00, 0x00}, 0x0999}}; // 0.7071067811865475244

const R msqrt2by2 INIT {{{0x07, 0x07, 0x10, Ox67, 0x81, 0x18, O0x65,
0x47, 0x00, 0x00}, 0x5999}}; // -0.7071067811865475244

While the previous functions require you to work on the low level OBCD structure to set
an OBCD value, the function ExecuteToOBCD() is much easier to use:

i nt ExecuteToOBCD(const PEGCHAR *str, OBCD &obcd, BOOL bErr Check=TRUE);

This function takes a string representation of a floating-point value and sets the OBCD
obcd to itsvalue. For example, the following code sets x to 3.21e-5:

OBCD x;
Execut eToOBCD(" . 0000321", Xx);

If you pass an invalid string representation of afloat into the function, then the OBCD
will be set to ERROR. For example:

OBCD x;
Execut eToOBCD(". 00003. 21", x); [/ x=0BCD representati on of ERROR

When using this function you do not have to worry about setting the exponent explicitly;
it gets set automatically by the function.

Finally, there are afew functions to set an OBCD to specific values such asinfinity, pi or
e. Some of theseinclude:

void Cal_setinfp OBC (OBCD *X); /1 Place infinity in x
void Cal_setinfmOBC (OBCD *Xx); /1 Place -infinity in x
void Cal_setundef OBC (OBCD *x); /1 Place undefined in x
void Cal _settrue OBC (OBCD *Xx); /1 Place true in Xx
void Cal_setfal se OBC (OBCD *x); /1l Place false in x
void Cal_set05 OBC (OBCD *x); /1l Place .5 in x

88

void Cal_setwrax OBC (OBCD *X); /1 Place the max possible value in x

void Cal_setwrin OBC (OBCD *x); //Place the mn possible value in x
void Cal_setpi_OBC (OBCD *x); /1 Place pi in x

void Cal _set2pi _OBC (OBCD *Xx); /1l Place 2*pi in X

void Cal _setpih_OBC (OBCD *Xx); /1 Place pi/2 in X

void Cal _setpigq OBC (OBCD *Xx); /1 Place pi/4 in X

void Cal_sete OBC (OBCD *Xx); /1l Place e in X

void Cal_setlnl0_OBC (OBCD *x); /1 Place In(10) in x

Performing Operations on OBCDs

The next step in using OBCDs is performing cal culations with them. Here are afew
common operations that take two operands:

word Cal _adds_OBC (OBCD *x, OBCD *y); /1 Adds x to y (x+y).

word Cal _subs_OBC (OBCD *x, OBCD *y); /] Subtracts x fromy (x-y).
word Cal _nuls _OBC (OBCD *x, OBCD *y); /1 Miltiplies x and y (x*y).
word Cal divs_OBC (OBCD *x, OBCD *y); /]l Divides y into x (x/y).
word Cal _sqgrts_OBC (OBCD *x); [Takes the square root of x.
word Cal _add_OBC (OBCD *x, OBCD *y); /1 Adds x to y (x+y).

word Cal _sub_OBC (OBCD *x, OBCD *y); /1 Subtracts x fromy (x-y).
word Cal _nmul _OBC (OBCD *x, OBCD *y); /1 Miultiplies x and y (x*y).
word Cal _div_OBC (OBCD *x, OBCD *y); /]l Divides y into x (x/y).
word Cal _pow OBC (OBCD *x, OBCD *y); /1 Raises x toy (x"y).

Notice that these functions return an error code, not the result of the operation. The result
of the operation is stored in the first parameter, x. For example:

word error;
oBCD x, v;
Cal _setn_OBC(10, &x); /1 set X
Cal _setn_OBC(15, &y); Il set y

10
15

error = Cal _adds_OBC(&x, &y); // set x =x +y
if(error !'=1MCAL_NORM
{

}

/1 An Error Qccurred!

When this code finishes, x has the value of 25. If the return value from the addition
function is anything other than IM_CAL_NORM, then an error occurred. Y ou can view
all thereturn valuesin the ClassPad 300 SDK API Reference Guide under Math
Functions->Cal culation Error Codes.

There are also several functions that operate on single operands. Some of these include:

word Cal _sqrt_OBC (OBCD *x); [/ Takes the square root of x

word Cal | og_OBC (OBCD *x); /1 Takes the log of x (log(x))

word Cal | 0gl0 OBC (OBCD *x); // Takes the |og base 10 of x
/1 (1og_10(x))

word Cal _sin_OBC (OBCD *x, word wdrg); // Takes the sin of x

word Cal _cos _OBC (OBCD *x, word wdrg); // Takes the cos of x

word Cal _tan_OBC (OBCD *x, word wdrg) // Takes the tan of x

89

These functions also return an error code and place the result in x.

Converting OBCDs

There are also several functions that convert OBCDs into different datatypes. An OBCD
can be converted to a short, long or string. The functions to convert an OBCD to a short
or long are similar to the functions we' ve already seen:

word Cal toshort OBC(OBCD *x, short *wx); //Convert an OBCD to a short
word Cal tolong OBC(OBCD *x, |ong *wx); /1 Convert an OBCD to a | ong.

Once again, be careful not to expect the conversion as the return value:

OGBCD x;

long v;

word error_code;

Cal _setn_OBC(6, &x); /] set X = 6
error_code = Cal _tol ong_OBC(&x, &y); Il set y = x;

There are many different functions that can be used to convert an OBCD to a string.
These functions differ by which form of the OBCD is placed in the string — normal mode,
scientific notation, etc. We will look at four of these functions. To view all of the
available functions, refer to the ClassPad 300 SDK API Reference Guide Strings-
>Functions to Convert OBCD/CBCD datatypes to strings.

/1 Changes the OBCD value to normal node and places it in str.
word CP_Norm OBC (OBCD *x, CP_CHAR str[], short node);

/1 Changes decimal portion of OBCD to fixed size and places it in str
word CP_Fix_OBC (OBCD *x, CP_CHAR str[], short dig);

/1 Changes the OBCD value to scientific notation of precision dig and
/1 places it in str.
word CP_Sci_OBC (OBCD *x, CP_CHAR str[], short dig);

/1 Change an OBCD object to a 15 digit string in normal node.
word CP_15digit_OBC (OBCD *x, CP_CHAR str[]);

Hereis an example on how to convert an OBCD to a string in different forms:

OBCD x;

CP_CHAR buffer[15];

Cal _setn_0OBC(1525, &x); /1l set x = 1525

X.obcdl. exponenti al = 0x1001;

CP_15di git _OBC(&x, buffer); /1 puts 15.25 in buffer
CP_Norm OBC(&x, buffer, | M MODE NORML) ; /1 puts 15.25 in buffer
CP_Fi x_0OBC(&x, buffer, 4); /1 puts 15.2500 in buffer
CP_Sci _OBC(&x, buffer, 4); /1 puts 1.525el in buffer

90

C++ Functions

It isimportant that you understand and can use the OBCD functions that we' ve covered
up to this point. Thisis how doubles are stored and used natively on the ClassPad. There
are, however, some functions available in C++ that are more human readable. Y ou can
view all of these functions in the ClassPad 300 SDK API Reference Guide under Math
Fuctions->C++ Math Functions. Here is an example of how they work:

OBCD x, v;
Cal |longto OCB(170, &x);

y = sin(x);
if(y == x)

X =X *y;

<
1

X + Yy,

Asyou can see, these are much more intuitive than the C functions. Remember that these
functions will only work in C++; you cannot use themin C.

CBCD Data Structure
A CBCD isused to hold acomplex number. Its structureis defined as:

t ypedef struct cbcd {

OBCD repart;
OBCD inpart;
} CBCD

Asyou can see from the structure, a CBCD isreally just two OBCDs. One OBCD —
repart — holds the real part of the CBCD and the second OBCD — impart — holds the
imaginary part.

Setting the Value of a CBCD

SinceaCBCD isjust 2 OBCDs, setting the value of a CDCB isjust like setting the value
of 2 OBCDs. For example, if you wanted to create the value 2.5 + 3i you just have to
create a CBCD with real part 2.5 and imaginary part 3. Here isthe code to do that:

CBCD x;
Cal | ongto_OBC(25, &x.repart); /1l set x’s real part to 25

/1 change the real part’s exponent to 1070
X.repart.obcdl. exponential = 0x1000;

Cal _longto OBC(3, &x.inpart); /1l set x's imaginary part to 3

Theresult isthe value 2.5+3i being stored in Xx.

91

Performing Operations on CBCDs

Most of the operations available to OBCDs are also available to CBCDs. A complete list
can be found in the ClassPad 300 SDK API Reference Guide under Math Functions-
>Complex (CBCD) Math Functions. Just like CBCD functions, these functions do not
return the result but areturn code. Hereisasimple example:

CBCD x, v;

Cal _longto OBC(3, &x.repart);
Cal _longto OBC(5, &x.inpart);

Cal _longto_OBC(1, &y.repart);
Cal _longto_OBC(6, &y.inpart);

i f(Cal _add_CVP(&, &) != | M CAL_NORM)
{

}

// an error occurred!

Converting CBCDs

Since CBCDs are complex numbers, they cannot be converted to longs or shortslike
OBCDs. You can, however, convert aCBCD to astring. The functions are very similar
to the ones used to convert CBCDs. Y ou can view them al in the ClassPad 300 SDK
API Reference Guide under Strings->Functions to convert OBCD/CBCD data types to
strings.

Hereisaquick example of converting a CBCD to a string:

CBCD x;

CP_CHAR buffer[30];

Cal | ongt o_OBC(1525, &x.repart); /1l set x = 1525
X.repart.obcdl. exponential = 0x1001;

Cal _longto_OBC(32, &x.inpart);

CP_15digit CWP(&x, buffer); /1 puts 15.25+32i in the buffer

BCD Converter Tool

The BCD Converter Tool is bundled with the SDK to ssimplify the creation of BCDs. Itis
accessible under the Tools Menu of Dev-C++.

92

%D Create BCD

X

¢ Create Feal BCD © Create Complexs CECD

Real Part: |5--I 235

Complex Part: | Cloze

BCD Walue: {1005, 0x12, 0x35, 0x00, 0x00, 0x00, 000, 000, 000, 0x00}, 01000}

To usethetool, first choose whether you are going to create an OBCD or aCBCD. Next
type in the decimal value for the real part and/or the complex part of your BCD and click
OK.

The hex representation of the value you entered will be displayed in the text box at the
bottom of the dialog. Y ou can use this hex string to create a new OBCD as follows:

OBCD x = {{{0x05, 0x12, 0x35, 0x00, O0x00, 0x00, O0x00, 0x00, 0x00, O0x00},
0x1000} };

CBCD y = {{{{0x05, 0x87, 0x64, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00}, 0x1000}}, {{{Ox06, Ox00, Ox00, Ox00, Ox00, Ox00, O0x00, O0x00,
0x00, 0x00}, 0x1000}}};

More Information

For more information about OBCD/CBCD data structures and the functions they can use,
please refer to the ClassPad 300 SDK API Reference Guide.

93

Strings and String Handling In the ClassPad

In this section we will discuss how strings are represented and used in the ClassPad. We
will start with alook at the ClassPad’ s character set and move on to the CPString class,
string conversion and displaying multiple languages.

ClassPad Character Set

The ClassPad has alarge number of characters it must be able to represent internally.
Because of this the ClassPad supports multi-byte character strings.

To differentiate a single byte character from a multi-byte character, a multi-byte
character’ sfirst byte is always a display code. Display codes are between the range OXEO
and OXEF. Currently only three codes are used: OXEC, OXED, and OXEE.

The entire character set on the ClassPad is as follows:

Basic Single-Byte Characters 0x30(
20|zl |22 |23 (e |0 b |2 |28 |29 |z h |%B |=C |zD | zE|=F

1)
1z
2
3%
4x
Sx
fix
Tx
8
B

*
+
|

w3 ==

|

AT |
L (W || T e | 1o
= O3 mka
== = e
P ||]| S| 0
A | e
P e
|

| o o0 o 3
3
o

rt | O |2 |5
C|(m|=(m|on| 3
| —h| T |
N Tn e vy R

Fo A o o 0

T

Bz
Cx
Dx
Ex
Fx

94

Iulti-BExte Characters OxEC

Ry [k |00 (40 |2 ik |5 | — [T || (Y

R [[[t | k[o [[[2 [C
G [(W | -H TS| | =
A E N e R TR SR RN Rt b i R T
eI I M I e v
IR E=R MR E A e P Rl + |+
e e = A= = A A A = - m| m
o2 || 1L |0 | =e |30 |30 a0 | | T | m | m
O | 0 |40 [am |20 <D <0 o |0 | |6 |
A SRR N =R A R = L - o | w
e R AR AR R E T R E R R E TR YT n | n
EAEL SRR NAE A N R FYNTTTRE) =] T | o
DVRED S WA B e o P R = b m| m
ST |2 |0 | [sk o | = | | | r|
o | AT |G [N (19 | o | | oT =2 | | | (R |
< B TEE L N N R e Rl T R N~ ol o
SIS A R A AT A s A=A s

95

Wulti-Ewte Characters OxED

By la= (00 < py (e | B [22 | W | || G

HY fom | [| | |5 D | 2| O 2 | B2 "
G [o= 5o 2F [a0 o | 2 (S| T M| B b
AR e B TR L SRR A P iy
ol <3 |3 em | i <3| W || 5| | o :
A A= [F [o w |] +
o P BE R A i SO DL = N PP § m
ool el @ |0 2 T LN m
G| W= a0 [0 | B 2| m| T 2 r.
EAELIE TR NN o Lo R e B - e W% o
RORE LR R E w He BRE TR TR TR | ~ |in
T AR TS T ¥ e e R TR TR o I = |7
c |«M |0 | W< | O 4 (20| = | oL | €| £ |m
=M |aC | am | |G o= | S (| N Lo
ot | ATH D || A | e T | | | B G Lo |
= = [[0 (| 2 5 D | | G | B L | =
R I A T - I EA A A A=A A s

96

Iulti-Byte Characters OxEE

#0|xl |22 23 | =25 |26 |27 =8 (29|28 (2B (xC|zD|(=E |=F
Oz| (#(€E MW FIT " nL X|HE|F
z|®2Lat+-=E2eEemnac/2(CcD2|U
Su (ML (%W R LS| e 8]
Gz - M QRIS T T Al
4dx
Sz |FET| TN ®@ &0t E|¥FrFI€T
6x | & [CYF & [T e R A e [Ya| Ve | B
Te BT e (a8 &0 W =
a0 U JL JRedt JESE R A Rieeih -0l G
SRR A SRR = IF S EE RCAE b a1
by
Bx
Cx
Dz
Ex
Fz

Each character also has a bold representation.

Let’swalk through the creation of the multi-byte character ¥:. Looking at the character
charts, you'll see that ¥z has display code OXEE and it’ s second byte is Ox6E (refer to the
chart immediately above). To create this character the code would look like this:

CP_CHAR nul ti [3] ={ OXEE, OX6E, 0} ;

Notice that this array is null terminated.

CP_CHAR and PEGCHAR

While using the ClassPad, you may notice that some string functions expect PEGCHAR
whereas others expect CP_CHAR. PEGCHAR is defined as:

t ypedef char PEGCHAR,

Whereas CP_CHAR is defined as:

#defi ne CP_CHAR unsi gned char

In general, these are two things that mean the same thing. If you have a CP_CHAR that
needs to be aPEGCHAR (or vice versa), just cast it to the correct type. Because these

97

two types exist, you should avoid using the data type char. Using char will lead to alot
of unnecessary casting.

CP_CHAR Functions

The SDK provides afew string functions that can be used for characters or character
arrays of type CP_CHAR.

To change the case of a CP_CHAR*, the following functions are used:

voi d CP_Char act er Upper (CP_CHAR *pS);
voi d CP_Char act er Lower (CP_CHAR *pS);
voi d CP_FChar act er Upper (CP_CHAR *pS) ;
voi d CP_FChar act er Lower (CP_CHAR *pS) ;

Thefirst two functions, CP_Character Upper () and CP_Character L ower (), are not
multi-byte safe. When dealing with multi-byte characters be sure to use
CP_FCharacter Upper () and CP_FChar acter L ower ().

To return the length of a CP_CHAR* array, use:

int CP_StringLen(CP_CHAR *pS);
int CP_StringBytelLen(CP_CHAR *pS);

Notice that CP_StringL en() will return the number of charactersin CP_CHAR*. Thisis
not the same as the value returned by CP_StringBytelL en(), which returns the number of
bytesina CP_CHAR. When dealing with multi-byte characters, the number of
characters and number of bytes will not be the same.

The following functions are the equivalent of the Standard C strcpy/strncpy and strcat
functions. When using multi-byte strings, be sure to use the multi-byte safe version of
string copy and concatenate.

CP_CHAR *CP_Stri ngCopy(CP_CHAR *dest, CP_CHAR *src);
CP_CHAR *CP_Stri ngnCopy(CP_CHAR *dest, CP_CHAR *src, int maxlen);
CP_CHAR *CP_Stri ngByt eCopy(CP_CHAR *dest, CP_CHAR *src, int maxbyte);

CP_CHAR *CP_StringCat (CP_CHAR *dest, CP_CHAR *src);
CP_CHAR *CP_StringnCat (CP_CHAR *dest ,CP_CHAR *src, int maxlen);
CP_CHAR *CP_Stri ngByt eCat (CP_CHAR *dest ,CP_CHAR *src, int naxbyte);

Finally there are functions to compare two CP_CHAR*. These functions are similar to
the standard C function strcmp, and return O if pS1 == pS2, <0 if pSL > pS2 or >0 if p2 <
pSL. CP_StringCmpi() does a case-insensitive comparison and CP_StringnCmp() will
compare the strings up to index n. When comparing multi-byte arrays, use
CP_StringByteCmp() to compare on the byte level.

int CP_StringCrp(CP_CHAR *pSl1l, CP_CHAR *pS2);

int CP_StringCrpi (CP_CHAR *pSl1l, CP_CHAR *pS2);

int CP_StringnCnp(CP_CHAR *pSl1l, CP_CHAR *pS2, int n);

int CP_StringByteChp(CP_CHAR *pSl1l, CP_CHAR *pS2, int maxbyte);

98

CPString

The CPString is a C++ class that encapsul ates the memory allocation necessary for string
handling and multi-byte string handling, while still providing access to araw character
buffer.

The character buffer is dynamically alocated, and may be reallocated when the string is
modified. If the string is modified, destroyed, or goes out of scope, any saved reference
to the string (a saved value from Text() or an iterator) should be considered invalid. The
exception isif aniterator is passed by reference to the operator that modified the string,
the iterator will be automatically updated.

CPString is not areference counted string. If you pass a CPString as an argument to a
function it will make a complete copy of that string. Thisisnot very efficient and can
waste alot of memory. If you plan on passing a CPString as an argument to a function
you should pass it as a constant reference. For example:

voi d MyFunction(const CPString& str)
{

}

do something ...

Constructors and Assignment
To create a new CPString you can use one of the following constructors:

CPString();

CPStri ng(CPMCHAR c) ;

CPStri ng(const PEGCHAR* s);
CPString(const CPString& y);
CPString(OBCD d, int numdigits);

Instead of explicitly creating a string with a constructor, the assignment and
concatenation characters are also defined as:

CPStri ng& operator=(const CPString& y);
CPStri ng& operator+=(const CPString& y);
CPStri ng& operat or +=(const PEGCHAR *y);

Here are some examples of creating CPStrings:

CPString strl;

strl = "Hello world.";

strl += " How are you?"; //strl now equals “Hello world. How are you?”

CPString str2("l amfine.");
CPString str3(str2); [/str2=str3="1 amfine.”

99

OBCD x;
Cal _setpi _OBC(&x);
CPString pi(x, 10); // pi="3.14159265"

CPString Comparison
The comparison operators == and != are defined as:

i nt operator==(const CPString& y);
i nt operator!=(const CPString& y);

The Standard C function strcmp is also available by using these functions:

i nt Conpar e(const CPString& y) const;
i nt Conpar e(PEGCHAR * | psz) const;

Here is an example that uses these functions:
int i;
if(str2 == str3)

{
if(strl != str2)

{
}

i = str2.Conpare("this will fail");

Useful String Functions

The CPString class comes with a variety of string functions that will allow you to
manipulate a string in many different ways.

First of al, if you need to know the value of a character at a certain index, the[]
operator is defined so that the following code is valid:

CPString str;
str = “test”;
CP_ CHAR ¢ = str[1]; // cis ‘¢

You can also retrieve theraw text buffer with any of the following three functions:

const PEGCHAR* Text();
oper at or LPPEGCHAR() ;
PEGCHAR *Get Buf fer();

Be aware that the pointer returned by these functionsis temporary and should never be
saved or modified. This buffer can become invalid when other CPString members are
called (like += etc) or when the object goes out of scope

Another common request is for the length of a string. The follow functions help get a
string’ s length:

100

unsi gned int BytelLength() const {return mbytelLength;}
unsigned int Length() const {return mcharlLength;}
unsi gned int BytelLengthTo(int charOfset);

int IsEnpty();

Notice that the first two functions are called Bytelength() and Length(). If you
remember, CPStrings are made to hold single-byte or multiple-byte characters. This
means that a string’ s byte length is not always equal to its character length. Be
careful when allocating a string to use Bytel ength() and not L ength().

Bytel engthTo() converts a character offset to a byte offset and | SEmpty() returnsal if
the string is not empty.

For example usage of some of these functions, take alook at the following code:

CP_CHAR nmul ti [3] ={ OXEE, Ox6E, 0} ;
CPString stri((PEGCHAR*)nulti); //nulti-byte character %
CPString str2("2");

int j;
j stril. BytelLength(); Il j=2
j strl.Length()); Il j=1

str2.ByteLength(); [/ j=1
str2.Length(); /1 j=1

J
j

Y ou can change the case of a string with the following functions:

voi d Toggl eCase();
voi d Upper Case();
voi d Lower Case();

Y ou can return the substring of a string by using the Mid() or Left() :

CPString Md(int charOfset);
CPString Left(int charOffset);

L eft() returns a sub-string from the beginning of the string to the character offset
charOffset. Whereas Mid() extracts a sub-string from the end of the string to the
character offset char Offset.

To clear the contents of a CPString use:

void dear();

Finally, you can replace al of the occurrences of a character in a CPString with:

voi d Repl aceCharact er (CPMCHAR c0, CPMCHAR cl);

101

Buffer Ownership

CPStrings control and manage a PEGCHAR* buffer that represents astring. The
deletion of these buffersis normally handled by the CPString class. If you have a
PEGCHAR* that you have already created, but would like to encapsulate in a CPString
class, you can place it in a CPString with:

voi d TakeBuf f er Owmner shi p(PEGCHAR *buffer);

This does not mean that the PEGCHAR buffer is copied into CPString. Instead, the
current memory location of PEGCHAR becomes the buffer portion of the CPString. The
CPsString’s current buffer is discarded when it takes ownership of the new buffer.

On the other hand, you can give up the ownership of a buffer and place it back into a
PEGCHAR* with:

PEGCHAR * G veBuf f er Oaner shi p();

This function differs from GetBuffer () in avery important way: Once a CPString has
called GiveBuffer Owner ship() its buffer isgone. The person who called the function is
now responsible for keeping track of the returned PEGCHAR* and making sure that it is
deleted.

String Conversions

The ClassPad contains several functions to convert strings to and from different data
types. Be aware that these functions take CP_CHAR* and not CPStrings. However,
once you have the converted value you can easily create a CPString with the appropriate
constructor.

Converting Between CPStrings and Supported C native data types
To convert a string to another data type the following functions are used:

int CP_StringTolnt(CP_CHAR *pS);

l ong CP_StringToLong(CP_CHAR *pS);
short CP_StringToShort (CP_CHAR *pS);
char CP_StringToChar (CP_CHAR *pS);

If you want to convert from an int, long, short or char to a string, use:
CP_CHAR *CP_IntToString(int value, CP_CHAR *pS);
CP_CHAR *CP_LongToString(l ong val ue, CP_CHAR *pS);

CP_CHAR *CP_Short ToString(short val ue, CP_CHAR *pS);
CP_CHAR *CP_Char ToStri ng(char val ue, CP_CHAR *pS);

102

Finally, if you want to convert from an int, long, short or char toa HEX string, use
these functions:

CP_CHAR *CP_IntToStringHex(int value, CP_CHAR *pS);
CP_CHAR *CP_LongToStri ngHex(l ong val ue, CP_CHAR *pS);
CP_CHAR *CP_Short ToSt ri ngHex(short val ue, CP_CHAR *pS);
CP_CHAR *CP_Char ToStri ngHex(char val ue, CP_CHAR *pS);

Hereis an example that uses some of these functions:

CPString strl1("44");
int i = CP_StringTolnt((CP_CHAR*)stril.GetBuffer()); [/ i=44

CP_CHAR c[100] ;
CP_IntToString(54, c); // c="54"

CP_IntToStringHex(15, c¢); [// c¢="0000000F"

Converting Between CPStrings and BCDs

The ClassPad does not have native support for doubles. Instead the ClassPad uses its
own data type called the BCD to represent floating point numbers. BCDs and their
internal representation are discussed in detail in the section titled Using Floating-Point
Values with the ClassPad.

Because aBCD can have several different visual representations (scientific, normal, fixed,
etc) there are several different functionsto convert aBCD to astring. There are also
usually pairs of functions: one that works with OBCD (real numbers) and another that
works with CBCD (complex numbers).

To take the internal representation of a BCD in hex, and placeit in astring use:
word CP_codech_OBC(CP_CHAR data[], OBCD *x);

To convert aBCD to normal mode use:
word CP_Norm OBC(OBCD *x, CP_CHAR str[], short nopde);
word CP_Norm CMP(CBCD *x, CP_CHAR str[], short node);

The parameter mode represents which normal mode you would liketo use. Valid options
areIM_MODE_NORM1 or IM_MODE_NORM2.

To convert aBCD to afixed size use:
word CP_Fi x_OBC(OBCD *x, CP_CHAR str[],short dig);
word CP_Fix_ CMP(CBCD *x, CP_CHAR str[],short dig);

where dig is the number of digitsto theright of the decimal. For example 5 with afixed
size of 3 would be 5.000.

To create a string representation of a BCD in scientific notation use:
word CP_Sci _OBC(OBCD *x, CP_CHAR str[],short dig);
word CP_Sci CMP(CBCD *x, CP_CHAR str[],short dig);

103

The parameter dig represents the number of significant digits. So the BCD 555555
passed with adig of 3 would be 5.55€5.

Y ou can a'so use the following functions to convert a BCD to format mode of length
digit:
word CP_digit_ OBC(OBCD *x, CP_CHAR str[],word digit,

short node, short dig);

word CP_digit CMP(CBCD *x, CP_CHAR str[],word digit,
short node, short dig);

The values for mode can be:

IM_MODE_NORM1
IM_MODE_NORM?2
IM_MODE_FIX
IM_MODE_SClI

digit can be one of the following:

e IM_DIGIT.9
e IM_DIGIT 6
e IM_DIGIT 4

digit sets the maximum number of characters that can appear inaBCD. For example, pi
with IM_DIGIT_4 would be 3.14. Pi with IM_DIGIT_6 would be 3.1415

The parameter dig is only used with Sci and Fix modes to determine the number of digits
after the decimal point.

Finally, these two functions can be used to convert aBCD to string in degrees, minutes,
seconds representation:

word CP_dnms_OBC(OBCD *x, CP_CHAR str[]);
word CP_dms_CBC(CBCD *x, CP_CHAR str[]);

Hereis an example that uses some of these functions:

OBCD x;

Cal _setpi_OBC(&x); [/ set x = 3.141592654...

CP_CHAR c[100];

CP_Norm OBC(&x, ¢, |M MODE NORML); // c="3.141592654"
CP_Fix _OBC(&x, c, 3); [/ c="3.142"

CP_Sci _OBC(&x, ¢, 2); /Il c="3.1e+0"

CP digit_OBO(&, ¢, IMDIGT.9, IMMDESC, 3); // c="3.14e+0

104

Thereis only one function available to convert a string to an OBCD:

i nt ExecuteToOBCD(const PEGCHAR *str, OBCD &obcd, BOOL bErr Check=TRUE);

While the function does not take a CPString as an argument, you can send the buffer of a
CPString like this:

CPString str = "123.32";
Execut eToOBCD(str. GetBuffer(), x, FALSE);

Multiple Language Support in the ClassPad

The ClassPad provides a method to easily allow you to create an add-in application with
support for multiple languages. Y ou might have noticed that in every ClassPad add-in
that is created, the function

char *Ext ensi onGet Lang(1 D _MESSAGE MessageNo)

must be defined to at least return “”. When properly used, this function will takein a
message number of a displayed string and output the correct text for the current language.
To work correctly, thereis alittle setup work that must be done, but once you understand
the stepsit is very easy to use.

To go step by step through creating an add-in with multiple language support we will
refer to the Hello World example add-in that came with the ClassPad 300 SDK. The add-
inislocated in Documents\ClassPad 300 SDK \Examples\HelloWorld\. First, let’srun
the program and see how the text on the ClassPad changes depending on what language
you are using.

[™ Hello | % Hola || ¥ Bonjour
HE'l].DI |i|. Hnlal |i|. Eh:un:iu:uurl E[
Hello Waorld Hola FMundo Bonjour Monde
Hello Warld Hola MMundao Bonjour Fonde
]] o]

Here you see the same screen in English, Spanish and French. You'll also notice that
there are two different text strings on the screen: “Hello” and “Hello World”.

105

Message Number Enumeration

The first step that you will need to do when designing your application is keep a running
enumeration of IDsfor all of the strings that will appear in you application. These IDs
are called message numbers. In the Hello World add-in thisisdonein
HelloLangDatabase.h. Hereisthe code that creates the enumeration:

#defi ne HELLO MESSAGE_START LOCAL_LANG START+1

enum Hel | oWor | dMessage {
HELLO HELLO= HELLO MESSAGE START,
HELLO HELLO WORLD,
HELLO_MESSAGE_END

b

In the enumeration we have the HELLO_HELL O message ID, which refersto the
“Hello” message on the button and the menu, and the HELLO HELLO_ WORLD
message D that refersto the “Hello World” string in the Module Windows. The more
text messages you have, the more entries in the enumeration you must add. The
enumeration should always start from LOCAL_LANG_START + 1. Thisensures that
thereis no collision of message IDs. In HelloLangDatabase.n LOCAL _LANG_START
+ lis#defined asHELLO MESSAGE_START. You should also add an ending entry
into your enumeration, like HELLO _MESSAGE_END, so you can check that a message
ID iswithin your enumeration range.

Language Arrays

Each one of the message IDs will become an index into an array. The array that is used
depends on what language is currently set. Using thisindex and the array that
corresponds to the current language, the correct text string will be returned. First, let’s
take alook at all of the arrays that HellowWorld defines in HelloLangDatabase.cpp:

CP_CHAR *Hel | oMessageDat a_Eng[] ={
"Hel | 0",
"Hell o World",

b

CP_CHAR *Hel | oMessageDat a_Deu[] ={
"Hal | 0",
"Hallo Welt",

}s

CP_CHAR *Hel | oMessageDat a_Esp[] ={
"Hol a",
"Hol a Mundo",

1

CP_CHAR *Hel | oMessageData_Fra[] ={
"Bonj our",
"Bonj our Mnde",

b

CP_CHAR *Hel | oMessageDat a_Por [] ={

106

"Hal |l 0",
"Hal | o Mundo",

b

Each supported language in the ClassPad has its own array. Y ou do not have to support
every language if you do not want to.

Defining ExtensionGetLang()

Now comes the step of actually defining the function ExtensionGetL ang(). Y ou can
view ExtensionGetL ang() inits entirety by looking in HelloLangDatabase.cpp. We will
be looking at the function piece by piece for explanation purposes.

ExtensionGetL ang() receives an ID_MESSAGE MessageNo as a parameter. This
parameter should be one of your message IDs. Just to make sure that MessageNo appears
in our enumeration, and to normalize it to be an array index we do the following:

i f (MessageNo<HELLO MESSAGE_START || MessageNo>HELLO MESSAGE_END)
return ""

MessageNo -= HELLO MESSAGE START;

This simply says if MessageNo is not in our enumeration, return “”. Otherwise normalize
the message ID to start at 0 so it can function as an index to an array.

The next step that we need to do is determine which array to use to get the language
string. To determine the current language we use the function:

i nt Get Current Languagel nf o()

Thisfunction’sreturn value is used in a switch statement of all of the supported
languages:

switch (Get CurrentLanguagel nfo())
{
case Current Language_Deu :
pStr = (char *)Hel | oMessageDat a_Deu[MessageNo] ;
br eak;
case CurrentLanguage_Esp :
pStr = (char *)Hel | oMessageDat a_Esp[MessageNo] ;
br eak;
case CurrentLanguage_Fra :
pStr = (char *)Hel | oMessageDat a_Fra[MessageNo] ;
br eak;
case CurrentLanguage_Por
pStr = (char *)Hel | oMessageDat a_Por [MessageNo] ;
br eak;
case CurrentLanguage_ Eng :
def aul t
pStr = (char *)Hel | oMessageDat a_Eng[MessageNo] ;
br eak;

107

}

return pStr;

The current language decides which of our language arrays we will index into. We then
return the string at our normalized index to complete the ExtensionGetL ang() function.

But you may be wondering, how does the menu or button know which message ID it
should send? The answer isthat you supply thisinformation when you create the object.
For example here is the creation of the text button in the toolbar from
HelloworldModule.cpp:

PegText Button* b = new PegTextButton(1l,1, GetlLang(HELLO HELLO),
| DB_HELLO, AF_ENABLED| TT_COPY) ;

Instead of creating the button with atext string, we use the function GetL ang() with the
appropriate message ID. The button’stext is*“Hello” so we use the message ID that
represents “Hello”, HELLO HELLO, asthe parameter to GetL ang().

The GetL ang() function will check this parameter to seeiif it is a system standard Id.
System standard IDs are IDs that already have values for all the languages supported by
the ClassPad. These include common menu entries such as “Copy”, “Paste”, or “Undo”.
Refer to the SDK Reference Guide for a complete list of al of the system standard
messages and their I1Ds.

If the message ID is not in the system range, then the ExtensionGetL ang() function that
you created will be called to return the correct text string.

Y ou should refer to the Helloworld example if you have any more questions about
creating an add-in that supports multiple languages.

108

MCS — Memory Control System

MCS, Memory Control System, is used to save data on the ClassPad. Thisincludes

saving something as ssimple as avariable in Main to saving something as complex as an
eActivity file with multiple embedded applications. This section will briefly discuss the
structure of MCS and then provide information on the BIOS functions to write to MCS as

well asthe C++ file classes for MCS.

MCS Overview and Structure

All variables on the ClassPad are saved in MCS. Each variable must have aname and a

datatype. Thefollowingisalist of datatypesand their sizein bytes:

Variable Type

Size

Real number

12

Complex number

N
=

I nteger

Float

String

Expression

Program

Function

File

List

V ector

Matrix

GraphPicture

mem

ProgramExe

Gmem

3D-Graph

Formula process

S|D|D|S3|>|>|D|D|5|S|S|o>|o|o|0oh~

All variable sizes must be divisible by 4.

Variables are stored in folders. A variable’ s name must be unique to itsfolder. Folders

can only be one level deep.

MCS has the following structurein RAM:

109

Top Address

< MCSTo —a
MCS Specia Area P

(Fixed Size)

Folder Management Area
(Fixed Size)

Folder Area
(Variable Size)

MCS Area

Free Area
(Fixed Size)

Malloc Area P

< MCSEnd v
' Bottom Address

The three sections of MCS each perform their own separate tasks. The MCS Specia
Area handles the overhead necessary to control the MCSfile system. The Folder
Management Area manages the folders that are created in MCS. Finally, the Folder Area
controls al of the datain MCS and the data attributes.

The Folder Management area uses the following structure to control all of the foldersin
MCS:

typedef struct _ FOLDERMANAGEMENTSTRUCT{

NAMEBUFFER naNarme; /'l Fol der nane

UCHAR *pucTopAdr; // Folder Data Area top address
WORD wval Nunber; // Nunber of variables in fol der
UCHAR ucFl ag;

UCHAR ucReser ve;

} FOLDERMANSTRUCT;

The NAMEBUFFER holds the name of the folder and is defined as:;

110

typedef struct NAMEBUFFER

CP_CHAR cpcNane[8] ; /1 Fol der and Vari abl e Nane Buffer
} NAMEBUFFER;

The variables are stored in structures that are defined as:

typedef struct _VARI ABLEMANAGEMENTSTRUCT{

NAMVEBUFFER naNane; /1 Variabl e Nane

DWORD dwOr f set Adr ; /1l Variabl e of fest

DWORD dwDat aSi ze; /'l Variable data size

UCHAR ucType; /1 Data Type

UCHAR ucFl ag;

UCHAR ucReserve; /! Reserved

UCHAR ucFol der No; /1 Fol der Managenent Area
} VALMANSTRUCT;

For the most part, you do not need to concern yourself with the internals of MCS or the
specifics of these structures. Most of the time you will interact with MCS viathe
functions that are contained in MCSBIi0sO.h or the CPFile classes, and never modify a
variable or afolder struct directly.

Interacting with MCS via BIOS Functions
The file MCSBIi0s0.h contains several functions that allow you to interact with MCSin

your add-in. In this section we will go through most of the functionsin MCSBio0sO.h and
provide examples on how to use them.

Creating/Deleting Variables and Folders

Before we begin using the BIOS functions to create a variable, let’s see how it isdonein
Main on the ClassPad. On the ClassPad, start up main and typeins=a. Then click on the
ClassPad Menu->Settings->V ariable Manager. The variable manager will open and you
will see that the main folder has one variableinit. Double click on that folder and you
will find your variable x with avalue of 5.

111

[l % Edit Action Interactive Variable Manager [X] Variable Manager Ed

] R it Vi
0.5 1 I:::JIE:--- H.l"l F E::in'-.-'lew A1l e Edlt g FI11 m]
EF'S - -

5
l

[tk [abc [cat [20 |EIEIE]
[nfBfefofc]a]s |3 |a]y|=]|z 4]
log [In | T 7 [&]=]"

R BEAE
ENEN RHERE Li i
L] =2 |E‘ . |E||ans [THEOT | [Close | [THFUT | -_Cl
TRIG JCALC JorTH] YRR JERE (== —

Ala Standard Real Rad dm Ala Standard Real Rad gml Ala Standard Real Rad dm |

To create this same variable in your add-in you would use the function:

i nt BMCSCreat eVari abl e(CP_CHAR *pcpcFol der Nane, CP_CHAR *pcpcVal Naneg,
UCHAR ucVal Type, DWORD dwbat aLengt h, UCHAR *pucDat aTopAdr)

If the function completed successfully, the return value will be IMU_MCS _SUCCESS,
#define'd as 0. Otherwise the return value will be one of the error codes defined in
MCSLib.h. To create the same value as s+, we would do the following:

OBCD dat ;

Cal _setn_OBC(5, &dat) ;

i f(1MJ_MCS SUCCESS ! = BMCSCr eat eVari abl e((CP_CHAR*) "nai n",
(CP_CHAR*) "x", I MJ_MCS TypeReal, sizeof (OBCD), (UCHAR*)&dat))

{

}

/1 error handling...

To delete avariable you would use the function:

i nt BMCSDel et eVari abl e(CP_CHAR *pcpcFol der Nane, CP_CHAR *pcpcVal Nane)

To delete the variable we created in the previous example, we would do the following:

i f (1 MJ_MCS_SUCCESS ! = BMCSDel et eVar i abl e((CP_CHAR *)” main”,
(CP_CHAR *)"x"))
{

}

/lerror handling...

The functions to create folders and delete folders are as follows:

i nt BMCSCr eat eFol der (CP_CHAR *pcpcFol der Nane, UCHAR *pucFol der Nunber)
i nt BMCSDel et eFol der (CP_CHAR *pcpcFol der Nane)

112

When creating afolder, you must passin areference to a UCHAR to get the folder
number back from the function. The following example shows how to create and delete a
folder:

UCHAR t enp;
i f (I MJ_MCS_SUCCESS ! = BMCSCr eat eFol der ((CP_CHAR *)"test", & enp))

/1 error handling...

}

i f (1 MU_MCS_SUCCESS ! = BMCSDel et eFol der ((CP_CHAR*) "test"))
{

/1 error handling...

}

Changing a Variable’s Name and Attributes

The MCS BIOS provides severa functions to control different aspects of avariable. This
includes renaming a variable, copying and moving a variable, setting variable attributes
and searching for variables.

To rename a variable the following function is used:

i nt BMCSRenaneVari abl e(CP_CHAR * pcpcFol der Nane,
CP_CHAR *pcpcd dVal Nane, CP_CHAR *pcpcNewal Nane)

Variables also support being locked, meaning that their value cannot be altered. To lock
or unlock avariable you can use the following functions:

i nt BMCSVari abl eLockOn(CP_CHAR *pcpcFol der Nane, CP_CHAR *pcpcVal Nane)
i nt BMCSVari abl eLockOF f (CP_CHAR *pcpcFol der Name, CP_CHAR *pcpcVal Nane)

There are also functions to check the attributes of avariable. A variable can have the
following possible attributes:

IMU MCS FlaglL ock Folder/Variable Lock Flag
IMU MCS FlagUsing Folder/Variable In Use Flag
IMU MCS FlagUsed Folder/Variable Used Flag
IMU MCS FlagCursor Cursor on

IMU MCS FlagSelect Select on

To get or set avariable's attributes, use the following functions:

int BMCSSetVariableAttribute (CP_CHAR *pcpcFol der Nane,

CP_CHAR *pcpcVal Name, UCHAR ucAttri but eDat a)
int BMCSCGetVariableAttribute (CP_CHAR *pcpcFol der Nane,

CP_CHAR *pcpcVal Name, UCHAR *pucAttri but eDat a)

Hereis an example that uses some of these functions:

113

UCHAR attr;
OBCD dat ;
Cal _setn_OBC(5, &dat) ;

/] Create x=5
BMCSCr eat eVari abl e((CP_CHAR*) "mai n", (CP_CHAR*)"x", | MJ MCS TypeReal,
si zeof (OBCD), (UCHAR*) &dat);

/! Rename x toy
BMCSRenaneVari abl e((CP_CHAR*) "mai n", (CP_CHAR*)"x", (CP_CHAR*)"y");

/1 Lock y
BMCSVar i abl eLockOn((CP_CHAR*) " mai n", (CP_CHAR*)"y");

/1 Get the attributes of y
BMCSCet Vari abl eAttri bute((CP_CHAR*) "mai n", (CP_CHAR*)"y", &attr);

/1 Check to see if the lock is set ony
if ((attr & IMJ_MCS Fl agLock) !'= 0)

// The lock is on, so we will turn it off
BMCSVar i abl eLockOf f ((CP_CHAR*) "mai n", (CP_CHAR*)"y");

}
el se

// The lock is off, so we will turnit on

BMCSVari abl eLockOn((CP_CHAR*) "nmai n", (CP_CHAR*) "y");
}

Moving/Copying and Finding a Variable
To copy or move an MCS variable, the following functions are provided:

int BMCSCopyVari abl e (CP_CHAR *pcpcSour ceFol der Nane,
CP_CHAR *pcpcSour ceVal Name, CP_CHAR *pcpcDest Fol der Nane,
CP_CHAR *pcpcDest Val Nane)

int BMCSMoveVari abl e (CP_CHAR *pcpcSour ceFol der Name,
CP_CHAR *pcpcSour ceVal Name, CP_CHAR *pcpcDest Fol der Nane,
CP_CHAR *pcpcDest Val Nane)

If after moving a variable, you need to find it, there are three functions that allow you to
search for avariable:

int BMCSSearchVariabl e (CP_CHAR *pcpcFol der Namre, CP_CHAR *pcpcVal Nane,
UCHAR *pucVal Type, UCHAR **ppucManTopAdr,
UCHAR **ppucDat aTopAdr, DWORD *pdwDat aSi ze)

int BMCSSearchVal 2 (CP_CHAR *pcpcFol der Name, CP_CHAR *pcpcVal Nane,
CP_CHAR *pcpcVal Nane2, UCHAR uclLengt h)

int BMCSSearchVal 3 (CP_CHAR *pcpcFol der Name, CP_CHAR *pcpcVal Nare,
VALMANSTR **ppVal Man, UCHAR uclLengt h)

114

The first function, BM CSSear chVariable(), searches for an exact match of the variable
name that you passin. The second and third both perform partial matches. Notice that
BM CSSearchVal3() takesa VALMANSTRUCT reference as a parameter. In this case,
it isimportant that you know and understand the structure of avariable in MCS before
trying to use the function.

The following is an example that uses al three search functions as well as both the copy
and move function:

UCHAR attr, tenp;
OBCD dat ;
Cal _set n_OBC(5, &dat) ;

/]l Create x=5 in folder main
BMCSCr eat eVari abl e((CP_CHAR*) "mai n", (CP_CHAR*)"x", | MJ MCS TypeReal,
si zeof (OBCD), (UCHAR*) &dat);

/1 Create folder test
BMCSCr eat eFol der ((CP_CHAR*) "test", & enp);

/1 Copy x to test
BMCSCopyVari abl e((CP_CHAR*) "mai n", (CP_CHAR*)"x", (CP_CHAR*)"test",
(CP_CHAR*)"copi ed x");

// NMove x to test
BMCSMoveVar i abl e((CP_CHAR*) "mai n", (CP_CHAR*)"x", (CP_CHAR*)"test",
(CP_CHAR*) "nmoved x");

/1 Search using the first search function. This function returns the
/! address of the variable if found.

UCHAR *ucDat aTopAddr ess;

DWORD dwbDat aSi ze;

UCHAR *pucManTopAdr ;

UCHAR ucVal Type;

i f (BMCSSear chVari abl e((CP_CHAR*) "test", (CP_CHAR*) "nmoved x",
&ucVal Type, &ucManTopAdr, (UCHAR **)&ucDat aTopAddr ess, &dwbat aSi ze) ! =0)

/1 not found!

}
el se
/1l Create a variable using the address fromthe search function
BMCSCr eat eVari abl e((CP_CHAR*)"test", (CP_CHAR*) "f ound x1",
| MJ_MCS TypeReal , dwDat aSi ze, (UCHAR *) &ucManTopAdr);
}

/1 The second search function returns the nanme of the found vari abl e
/1 in a CP_CHAR buffer

CP_CHAR buffer[100];

i f(BMCSSear chVal 2((CP_CHAR*)"test", (CP_CHAR*)"noved ", buffer, 5) != 0)
{

}

/1 not found!

115

el se

/1 1f the variable is found, nake a copy of it
BMCSCopyVari abl e((CP_CHAR*)"test", buffer, (CP_CHAR*)"test",
(CP_CHAR*) "found x2");
}

/] The third search function returns the structure of the found

/] variable. This structure contains the variable’ s nane

VALMANSTRUCT *pVal Man;

i f(BMCSSear chVal 3((CP_CHAR*)"test", (CP_CHAR*)"copi ed ", &Val Man, 7)!=0)
{

/1 Not Found!!
}
el se
{
/1 1f the variable is found, create a copy of it
BMCSCopyVar i abl e((CP_CHAR*) "t est", pVal Man- >naNane. cpcNarne,
(CP_CHAR*)"test", (CP_CHAR*)"found x3");
}

Changing a Folder’'s Name/Attributes

Much like variables, you can change the name of afolder, change its locked status and
get its attributes with the following functions:

i nt BMCSRenaneFol der (CP_CHAR *pcpcd dFol der Nane,
CP_CHAR *pcpcNewrol der Nane)

i nt BMCSFol der LockOn(CP_CHAR *pcpcFol der Name)
i nt BMCSFol der LockOF f (CP_CHAR *pcpcFol der Nane)

i nt BMCSGet Fol der Attri but e(CP_CHAR *pcpcFol der Nane,
UCHAR *pucAttri but eDat a)

i nt BMCSSet Fol der Attri but e(CP_CHAR *pcpcFol der Name,
UCHAR ucAt tri but eDat a)

Unlike variables, when dealing with folders you can get and set the current folder by
calling these functions:

i nt BMCSCGet Current Fol der (CP_CHAR *pcpcFol der Nane,
FOLDERMANSTRUCT **pFol der Man, UCHAR *pucFol der Nunber)
i nt BMCSSet Current Fol der (CP_CHAR *pcpcFol der Nane,
UCHAR **ppucManTopAdr, UCHAR *pucFol der Nunber)

To get the current folder, you pass in a buffer to hold the current folder’ s name as well as
aFOLDERMANSTRUCT reference to get the current folder’ s struct. For example:

CP_CHAR f ol der Nane[si zeof (NAMEBUFFER) +1] ;

UCHAR ucFol der Number ;

FOLDERMANSTRUCT * pFol der Man;

i f (BMCSGet Curr ent Fol der (f ol der Nane, &oFol der Man, &ucFol der Nunber) ! =0)

{

116

return VEM ERR,
}

To set the current folder, you just need the name of the folder:

CP_CHAR fol derNanme[] = "FOLDERL";
UCHAR *pucManagenent TopAddr ess;
UCHAR ucFol der Nunber ;

i f (BMCSSet Curr ent Fol der (f ol der Nanme, pucManagenent TopAddr ess,
&ucFol der Nunber) !'= 0)
{

}

return VEM ERR,

Searching for a Folder

Unlike with variables, thereis only one function that is used to search for afolder. Itis
declared as:

i nt BMCSSear chFol der (CP_CHAR *pcpcFol der Name, UCHAR **ppManTopAdr,
UCHAR * pucFol der Nurrber)

To search, you just need to pass the name of the folder that you are looking for:

/1 To search "FOLDERL".

CP_CHAR pcpcFol der Name[] = "FOLDERL";

UCHAR *pucManagenent TopAddr ess;

UCHAR ucFol der Nunber ;

i f (BMCSSear chFol der (pcpcFol der Nane, &pucManagenent TopAddr ess,
&ucFol der Nunber) != 0)

{

}

return VEM ERR;

Reading/Writing to MCS using the CPFile Class

Most of the time when you save something in MCS you want to save more than asingle
variable. For example, in the AddressBook example that comes with the SDK, all of a
user’ s contacts must be saved out to and read in from asingle file. To accomplish this,
we use the CPFile classes.

The CPFile class hierarchy looks like this:

117

CPFile

f
| |

CPReadFile CPW riteFile

I T

CPReadMCsFile | | CPWriteMCSFile

Since we are reading and writing from MCS we will only create instances of the classes
CPReadM CSFile and CPWriteM CSFile to actually read and write. There are some
member functions in CPReadFile/CPWriteFile and CPFile that we will use, but you will
never instantiate these classes.

All CPFile derived classes of type IMU_MCS_TypeMem should have a header to
identify the application that uses the file and what kind of datait contains. In this section
we will go through an example of how to use the CPMEMFileHeader classto create afile
header as well as how to read and write afile using the CPFile classes.

Reading From MCS

To read from MCS you must create an instance of CPReadM CSFile. Y ou can use one of
the following constructors:

CPReadMCSFi | e (UCHAR type)
CPReadMCSFi | e (const char *name, const char *path=NULL, UCHAR type=0)

The first constructor creates CPReadM CSFile without a name or folder. Y ou have to set
these attributes before you can use thefile.

The CPReadM CSFile does not have any functionsto read data directly. It inheritsafew
functions from CPReadFile to read some data types from MCS. These functions include:

i nt ReadBytes(void *buffer, int nBytes);
virtual char ReadByte();

WORD ReadWor d() ;

int Readlnt();

OBCD ReadDoubl e();

i nt BytesRead();

There are also afew important inherited functions from CPFile that should be used before
trying to read afile:

bool IsNotError();
int FileExists();

Hereis a simple example of how to open afile and read in an integer:

CPReadMCSFi | e f (FI LE_NAVE, FOLDER_NAME);
if (f.lsNotError() && f.FileExists())

{

118

int i = f.ReadWord();
}

While this would work fine if your application only saved integers, how do you read data
types that do not have afunction in CPReadFile? For the most part, all datatypes define
their own Read() function to support being read from MCS.

For example, let's assume a class foo with the following:

cl ass Foo

{

voi d Read(CPReadMCSFi | e& f);
}

WEe'll dso say that foo’s data members that will be read from afile are an int count and a
CPString string. Then foo’ s Read function would look something like this:

voi d Foo: : Read(CPReadFi | e& f)

{
i = f.Readlnt();

string. Read(f);
}

Just like class foo has its own Read() function, so does class CPString. So to read a
CPsString, we just call its Read() function. In the same manner, if we had a class that had
afoo as a data member we would just call foo.Read(f) in that class's Read() function.

This means that any class that you create and want to read from MCS must have its own
read function. Conisder the ContactArray classin the AddressBook example. Remember
that the ContactArray is an array of Contact objects. The ContactArray’s Read function
first readsin an integer that represents the number of contacts saved to thefile. It then
loops that many times and calls the Contact class's read function to read in each contact:

voi d Contact Array: : Read(CPReadFi | e& f)

{
//first read in how many contacts are saved
int count = f.ReadWrd();
/1 loop that many tinmes
for(int i=0;i<count;i++)
{
//create a contact
Contact* ¢ = new Contact();
/1 Call that contact’s read function
c->Read(f);
Add(c);
}
// makes sure the array is in order
sort();
}

119

If we look closely at the Contact class, we see it isjust composed of CPStrings that hold
all the information for a contact. Therefore, the Contact class's Read() function will just
be each one of these CPStrings calling its Read() function:

/! Reads a contact froma file.
/1 Each CPString just calls its read function
voi d Cont act:: Read(CPReadFi | e& f)

{
firstName. Read(f);

| ast Nane. Read(f);
phonel. Read(f);
phone2. Read(f);
emai | . Read(f);
addr ess. Read(f);

}

Asyou can see, the Read() functions that you create will usually just call that class' s data
members’ Read() functions.

Writing to MCS

To writeto MCS, you must create an instance of the CPWriteM CSFile class. The
following constructors are available:

CPWiteMCSFi |l e (UCHAR type)
CPWiteMCSFil e (const char *nane, const char *pat h=NULL, UCHAR type=0)

If you use the first constructor, you must set the name and path of the file before trying to
write.

When you create aMCSWriteFile you do not provide afile sizein the constructor. Upon
creation no memory will be allocated and any write functions you call will not actually
write to memory. The write functions will, however, compute the size of the object
written. The function Realize() can then be used to allocate the memory for thefile. A
second call to the write functions will then write the file to memory. This method allows
you to write a file without determining how much space the file will require in memory
prior to creation.

CPWriteM CSFile does not have any functions that write to memory. Like
CPReadMCSFileg, it inherits afew write functions from its base class CPWriteFile;

int WiteBytes(void *buffer, int nBytes);
virtual void WiteByte(char c);

void WiteWrd(WORD w) ;

void Witelnt(int ii);

void WiteDoubl e(OBCD xx);

Hereis asimple example of creating a CPMCSWriteFile and writing an int:

CPWiteMCSFil e f(FI LE_NAVE, FOLDER _NAME);
f.Witelnt(8);

120

f.Realize();
f.Witelnt(8);

Without the call to Realize() the amount of space needed to write the file would have
been computed, but the file would not have been written to memory. Once you call
Realize() thefileis put in write mode, and all subsequent write functions actually write to
memory.

Just like when reading files, most of the time you will be interested in writing more than
just integers. With write files you will create Write() functions for classes that need to
write to MCS.

For example, let’slook at how the foo class would implement Write:

cl ass Foo

{
void Wite(CPWiteMSFile& f):

Thistime we'll say that foo wants to write data members count and string. Foo’s Write()
function would look something like this:

void Foo::Wite(CPWiteFile& f)
f.Witelnt(count);

/ljust like class CPString had a Read function, it also has
/la wite function
string.wite(f);

}

Just like when calling Read(), we call CPString’s Write() function to write a CPString. Keep in
mind that foo’s Write() function will end up getting called twice — once to compute the amount
of memory needed to write the file, and a second time to actually write it:

Foo foo = new Foo();

CPWiteMCSFile f(FILE NAVE, FOLDER NAME);

foo.Wite(f);

f.Realize();

foo.Wite(f);

Let’stake another look at AddressBook and see how its ContactArray and Contact
classes implement their Write functions. First, here is the Write function for
ContactArray:

void ContactArray::Wite(CPWiteFile& f)

//first wite out how many contacts are in the array
f.WiteWrd(GetSize());

/11oop through that many times witing each contact

121

for(int i=0; i<GetSize();i++)

{
Contact *s = (Contact™*)GetAt(i);
s->Wite(f);

}

All that happens here is that we write out the total number of contacts that will be stored
as an integer, then call each contact’s Write() function to write the contact. Hereisthe
code for the Contact Class s Write() function:

/[l Wites a contact to a file. Since a contact is just a bunch of
/1l CPStrings, every CPString just wites itself.
void Contact::Wite(CPWiteFile& f)

{
firstName. Wite(f);

| ast Name. Wite(f);

phonel. Wite(f);

phone2. Wite(f);

emai | . Wite(f);

address. Wite(f);
}

Any classthat you create that you wish to save to MCS should aso have its own Write()
function.

CPFile Headers

We mentioned earlier that all CPFiles of type IMU_MCS_TypeMem should have afile
header. This header identifies what application uses the file and what type of datais
contained in thefile. Sofar we haven't dealt with headers when either reading or writing
in the AddressBook example. Thisis because we haven't yet discussed where the
ContactArray class's Write or Read methods are called.

Generally, the ClassPad uses a document/view approach to display data on the screen. A
document class handles reading/writing the data, and manages the data while the
application isrunning. A view, on the other hand, manages how this data is displayed.

In the AddressBook example you will notice that there is an AddressDocument class that
is derived from CPDocument. Thisisthe AddressBook’s document class. It containsthe
array of contacts and the Read() and Write() methods to save the array.

It isthese Read() and Write() methods that call the ContactArray object’s Read() and
Write() functions and handles the creation of the file header.

To create afile header, we use the CPMEMFileHeader class. The constructor s mply
takesin aPEGCHAR* of your application’s name and the name of the data. Y ou can
optionally supply it with amajor and minor version number:

CPMEMFI | eHeader (const PEGCHAR * AppNane, const PEGCHAR *Dat aNane,
PEGCHAR Maj or Ver si on=1, PEGCHAR M nor Ver si on=0) ;

122

The class only has two member functions, Read() and Write().

void Read(CPReadFile &f);
void Wite(CPWiteFile &f);

Once you have created a CPMEMFileHeader, you simply call its Read() function if you
arereading in afile or its Write() function if you are writing out afile. For example,
here is the Read() function from AddressDocument.cpp:

/1 Application Type
const PEGCHAR* ADDRESSBOOK MEMIYPE HEADER = " Addr essBook";

/I Data Type
const PEGCHAR* ADDRESSBOOK MEMTYPE_SAVED STATE = "Data";

voi d Addr essDocunent: : Read(CPReadFi |l e &f)

{
if (f.FileExists())
{
//Create the file header with the application and data type
CPMEMFi | eHeader header (ADDRESSBOOK MEMIYPE HEADER,
ADDRESSBOOK_MEMIYPE_SAVED STATE) ;
/! Read in the header (basically reads the header and
/1 noves the file pointer to the start of the contact data)
header. Read(f);
if(f.lsNotError())
/1 Call the ContactArray’'s Read Function
/1 (which in turn calls the Contact’s Read Functi on)
cont acts. Read(f);
}
}
}

Asyou can seeit issimply a matter of creating a header and then reading it in before
reading in the contactsin the file. Writing afileis done very similarly — before writing
the contacts a header is written to thefile:

voi d AddressDocunent::Wite(CPWiteFile &f)

{
// Create the header

CPMEMFI | eHeader header (ADDRESSBOOK MEMTYPE HEADER,
ADDRESSBOOK_MEMIYPE_SAVED STATE) ;

!/ Wite the Header
header. Wite(f);

if(f.IsNotError())

/1 Call the ContactArray’'s Wite function
contacts. Wite(f);

123

}

Notice that these Read and Write methods take a CPReadFile f and CPWriteFilef asa
parameter. The methods that call these functions in AddresswWindow.cpp are responsible
for actually creating thisfile:

voi d Addr essW ndow. : Save()

{
CPWiteMCSFi | e f(FI LE_NAME, FOLDER, | MJ_MCS_TypeMen);
m doc->Wite(f);
f.Realize();
m doc->Wite(f);
}

FEEEEEEErrrr bbb bbb bbb rrrrrr

voi d Addr essW ndow: : Open()

{
CPReadMCSFi | e f (FI LE_NAVE, FOLDER, | MJ_MCS_TypeMen);
m doc- >Read(f);

}

Itisin this Save() function that the document’s Write() iscalled twice. Thefirst timeis
to allocate the memory needed for the file, and the second time isto actually write the file.

To summarize the following must be done on aread:

1) Create a CPReadM CSFile of type IMU_MCS_TypeMem
2) Create the appropriate header

3) Read in the header

4) Read in the datain thefile

And you must follow these steps on awrite:

1) Create a CPWriteM CSFile of type IMU_MCS TypeMem
2) Create the appropriate header

3) Write the header

4) Write the data for thefile

5) Call Realize();

6) Write the header

7) Write the datafor thefile

For more information about these classes, please refer to the ClassPad 300 SDK
Reference Guide or to the AddressBook example add-in.

124

More Information

For more information on the topics discussed in this document, refer to the SDK
Reference Guide. The SDK also contains many example add-ins that were created
specifically to help with the explanation of some of the concepts presented in this
document. Working through these examples and making changes to discover how your
changes affect the program is an excellent way to get a better grasp of how to program on
the ClassPad 300.

125

	Table of Contents:
	Introduction
	About this Document
	About the SDK API

	Portable Embedded GUI – PEG
	Static PEG Objects
	The PegPresentationManager
	The PegMessageQueue
	The PegScreen

	The PegThing
	Traversing the Presentation Tree of PegThings
	Adding to and Removing from the Tree
	Changing a PegThing’s Size or Location
	PegThing Type and Attributes
	PegThing Type
	PegThing Object IDs
	PegThing Signals
	PegThing Status Flags
	PegThing Style

	Current Focus
	Setting Focus
	Capture and Release of the Pointer

	PEG Data Types
	Fundamental Data Types
	PegPoint
	PegRect
	PegMessage
	CPString
	CPArray
	CPList

	Messages and Message Handling
	PegMessages
	Definition
	Peg System Messages
	User Defined Messages
	Peg Signals

	Handling Messages
	Message Flow and Routing
	Peg Timers

	Window and Screen Drawing
	The WindowsExample Add-in
	An Overview of Windows in the WindowsExample
	CPMainFrame
	CPModuleWindow
	CPWindow
	Windows in WindowsExample

	Coordinates on the ClassPad
	Drawing on the ClassPad
	Overriding the Draw() Function
	Invalidating and Drawing outside of the Draw() Method
	Drawing and Invalidating in WindowsExample

	Object Boundaries
	mReal, mClient and PegRects
	Using Object Boundaries in WindowsExample
	Bounding Rectangles in DrawText()
	Bounding Rectangles in OnPointerMove()

	Scrollbars
	How Scrolling Works
	Scrolling in WindowsExample

	User Interfaces
	Windows on the ClassPad
	PegWindow and PegWindow Derived Windows
	PegPresentationManager
	PegDecoratedWindow
	CPMainFrame
	CPModuleWindow
	CPTabbedWindow
	PegNotebook
	PegMessageWindow
	PegProgressWindow

	CPFrameWindow and CPFrameWindow Derived Windows
	SCWindow
	SCWindowWithMode
	MathWindow
	AbstractMathWindow
	SlidingMathWindow
	TabArrowMathWindow
	ScrollableMathWindow
	TextMathWindow

	Creating UI in a CPModuleWindow
	Menus
	Toolbars
	Status Bar

	Buttons
	PegButton
	PegTextButton
	PegBitmapButton
	PegCheckBox
	PegRadioButton
	CPDropDownButton
	CPMultiButton
	CPToggleButton

	Text Controls
	PegPrompt
	PegString
	CPPegString
	PegTextBox
	PegEditBox
	CPEditBox

	Other User Interface Controls
	PegList
	PegVertList / PegHorzList
	PegComboBox
	PegSpinButton
	PegProgressBar

	Using Floating-Point Values with the ClassPad
	OBCD Data Structure
	OBCD Flag
	The Mantissa
	The Exponent

	Setting the Value of an OBCD
	Performing Operations on OBCDs
	Converting OBCDs
	C++ Functions
	CBCD Data Structure
	Setting the Value of a CBCD
	Performing Operations on CBCDs
	Converting CBCDs
	BCD Converter Tool
	More Information

	Strings and String Handling In the ClassPad
	ClassPad Character Set
	CP_CHAR and PEGCHAR
	CP_CHAR Functions

	CPString
	Constructors and Assignment
	CPString Comparison
	Useful String Functions
	Buffer Ownership

	String Conversions
	Converting Between CPStrings and Supported C native data typ
	Converting Between CPStrings and BCDs

	Multiple Language Support in the ClassPad
	Message Number Enumeration
	Language Arrays
	Defining ExtensionGetLang()

	MCS – Memory Control System
	MCS Overview and Structure
	Interacting with MCS via BIOS Functions
	Creating/Deleting Variables and Folders
	Changing a Variable’s Name and Attributes
	Moving/Copying and Finding a Variable
	Changing a Folder’s Name/Attributes
	Searching for a Folder

	Reading/Writing to MCS using the CPFile Class
	Reading From MCS
	Writing to MCS
	CPFile Headers

	More Information

