Exercise on Statistics with ClassPad300

A survey on the running costs during a month was carried out between 100 owners of the car type A and 100 owners of the car type B.
The samples give the following arithmetic means and variances:

$$
\begin{aligned}
& \bar{x}_{A}=\frac{1}{100} \sum_{i=1}^{100} x_{i}=291[€], \quad \bar{y}_{B}=\frac{1}{100} \sum_{i=1}^{100} y_{i}=302[€] \quad \text { and } \\
& s_{A}^{2}=\frac{1}{99} \sum_{i=1}^{100}\left(x_{i}-\bar{x}_{A}\right)^{2}=30\left[\epsilon^{2}\right], \quad s_{B}^{2}=\frac{1}{99} \sum_{i=1}^{100}\left(y_{i}-\bar{y}_{A}\right)^{2}=28\left[\epsilon^{2}\right] \quad \text { respectively. }
\end{aligned}
$$

Suppose that the running costs during a month are $N\left(\mu_{A}, \sigma_{A}^{2}\right)-$ and $N\left(\mu_{B}, \sigma_{B}^{2}\right)-$ distributed respectively.
a) Compute a two-tailed confidence-interval for μ_{A} (C -level let be 95%).
b) Compute a two-tailed confidence-interval for σ_{B} (C-level let be 95%).
c) Test with a significance of $\alpha=5 \%$ the hypothesis $H_{0}: \sigma_{A}=\sigma_{B}$ against $H_{A}: \sigma_{A} \neq \sigma_{B}$
d) Assume that $\sigma_{A}=\sigma_{B}$. Test with a significance of $\alpha=5 \%$ the hypothesis $H_{0}: \mu_{A}=\mu_{B}$ against $H_{A}: \mu_{A}<\mu_{B}$.

Now we find the solutions by using the ClassPad300.
a) We get $289.91 \leq \mu_{A} \leq 292.09$ using the "OneSampleTint"-command (see the syntax of the command!)

b) We use the well-known formula $\frac{(n-1) \cdot s_{B}^{2}}{\chi_{n-1,1-\alpha / 2}^{2}} \leq \sigma_{B}^{2} \leq \frac{(n-1) \cdot s_{B}^{2}}{\chi_{n-1, \alpha / 2}^{2}}$ and need the $\chi_{n-1}^{2}-$ quantiles of the order 1- $\alpha / 2$ and $\alpha / 2$ respectively.
By the help of a small program we generate a table of values of the χ_{n-1}^{2} - distribution function, to find the needed quantiles $\chi_{99,0.975}^{2}=128.42$ and $\chi_{99,0.025}^{2}=73.36$.
We draw the generated tables in form of a statistic graphic (xy-line) and in form of a CubicReg-function $y=y 1(x)$. Finally we solve the equation $y 1(x)=y 2(x)$ with $y 2(x)$ $=\gamma=1-\alpha / 2$ and $\mathrm{y} 2(\mathrm{x})=\gamma=\alpha / 2$ respectively to get the wished quantiles.

Prograntor

Thus we get the wished interval $\sqrt{\frac{(n-1) \cdot s_{B}^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}}=4.646 \leq \sigma_{B} \leq \sqrt{\frac{(n-1) \cdot s_{B}^{2}}{\chi_{n-1, \alpha / 2}^{2}}}=6.147$.
c) We get the p -value $\mathrm{p}=0.732>\alpha=0.05$ using the "TwoSampleFTest"-command (see the syntax of the command!), i.e. we have nothing against hypothesis H_{0}.

d) Because of the result in c) we assume $\sigma_{A}=\sigma_{B}$ (pooled variances) and use the "TwoSampleTTest"-command (see the syntax of the command!) and get the p-value $\mathrm{p}=0<\alpha=0.05$, i.e. we are against hypothesis H_{0}.

Appendix（programs）

＊Edit Ctrl I		
ChiQuant N｜Chidf，gamma		
ClrText Local x Start，x End，NumVal ue，$x \times$ Start， $\mathrm{tt}, \mathrm{k}, \mathrm{h}, \mathrm{a}, \mathrm{b}$, aa ，Chidf，Q，gamma max（0，Chidf－50×（1－gamma ）\Rightarrow xStart Chidf $+50 \times$ gamma $\times x$ End 20才Numvalue		
ดテョa Goto b		
```Lbl a ヨコ+1テヨコ If aコ=2 Then max(0,Q-(xEnd-xStart)/1 0) }\vec{~}\timesxStar Q+(xEnd-xStart)/10```		
Program Editor	［	






