University of Applied Sciences Dresden/Germany Prof. Dr. Ludwig Paditz

Exercise on Statistics with ClassPad300

A survey on the running costs during a month was carried out between 100 owners of the car type A and 100 owners of the car type B.

The samples give the following arithmetic means and variances:

$$\overline{x}_{A} = \frac{1}{100} \sum_{i=1}^{100} x_{i} = 291 \ [\text{€}] , \qquad \overline{y}_{B} = \frac{1}{100} \sum_{i=1}^{100} y_{i} = 302 \ [\text{€}] \qquad \text{and}$$
$$s_{A}^{2} = \frac{1}{99} \sum_{i=1}^{100} (x_{i} - \overline{x}_{A})^{2} = 30 \ [\text{€}^{2}] , \qquad s_{B}^{2} = \frac{1}{99} \sum_{i=1}^{100} (y_{i} - \overline{y}_{A})^{2} = 28 \ [\text{€}^{2}] \qquad \text{respectively.}$$

Suppose that the running costs during a month are $N(\mu_A, \sigma_A^2) - \text{and } N(\mu_B, \sigma_B^2) - \text{distributed}$ respectively.

- a) Compute a two-tailed confidence-interval for μ_A (C-level let be 95%).
- b) Compute a two-tailed confidence-interval for $\sigma_{_{B}}$ (C-level let be 95%).
- c) Test with a significance of $\alpha = 5\%$ the hypothesis $H_0: \sigma_A = \sigma_B$ against $H_A: \sigma_A \neq \sigma_B$
- d) Assume that $\sigma_A = \sigma_B$. Test with a significance of $\alpha = 5\%$ the hypothesis $H_0: \mu_A = \mu_B$ against $H_A: \mu_A < \mu_B$.

Now we find the solutions by using the ClassPad300.

a) We get $289.91 \le \mu_A \le 292.09$ using the "OneSampleTint"-command (see the syntax of the command!)

- b) We use the well-known formula $\frac{(n-1)\cdot s_B^2}{\chi_{n-1,1-\alpha/2}^2} \le \sigma_B^2 \le \frac{(n-1)\cdot s_B^2}{\chi_{n-1,\alpha/2}^2}$ and need the
 - χ^2_{n-1} quantiles of the order 1- $\alpha/2$ and $\alpha/2$ respectively. By the help of a small program we generate a table of values of the χ^2_{n-1} – distribution function, to find the needed quantiles $\chi^2_{99,0.975} = 128.42$ and $\chi^2_{99,0.025} = 73.36$. We draw the generated tables in form of a statistic graphic (xy-line) and in form of a CubicReg-function y = y1(x). Finally we solve the equation y1(x) = y2(x) with y2(x) = $\gamma = 1 - \alpha/2$ and y2(x) = $\gamma = \alpha/2$ respectively to get the wished quantiles.

Thus we get the wished interval

$$\sqrt{\frac{(n-1)\cdot s_B^2}{\chi_{n-1,1-\alpha/2}^2}} = 4.646 \le \sigma_B \le \sqrt{\frac{(n-1)\cdot s_B^2}{\chi_{n-1,\alpha/2}^2}} = 6.147$$

c) We get the p-value $p = 0.732 > \alpha = 0.05$ using the "TwoSampleFTest"-command (see the syntax of the command!), i.e. we have nothing against hypothesis H₀.

d) Because of the result in c) we assume $\sigma_A = \sigma_B$ (pooled variances) and use the "TwoSampleTTest"-command (see the syntax of the command!) and get the p-value $p = 0 < \alpha = 0.05$, i.e. we are against hypothesis H₀.

🛛 🗙 Edit Action Interactive	🛛 Edit Action Interactive	Stat Calculation 🛛
		Two-Sample TTest
"Two Sample T-Test"	"Two Sample T-Test"	
"Two Sample F-Test"	"Two Sample F-Test"	t =−14.4437
100≑n1	100≑n1	1 P. =0
100.0000	100.0000	df =198
100≑n2 👹	100≑n2	
100.0000	100.0000	710p-1 =5,4772
√30 ≽sA	√30 ≽sA	<u> 220n-1 =5.2915</u> ▼
5.4772	5.4772	
mth abc cat 2D 🗵 🕂 ∓	√28 ≽ sB	√28 ⇒ sB
	5.2915	5.2915
TwoPropZipt	291≑xA	291⇒xR
TwoPropZTest	291.0000	291.0000
TwoSampleFTest	302⇒xB	302⇒xB
TwoSampleTInt "	302.0000	302.0000
TwoSampleTest		TwoSampleTTest "<", xA, sF
	done 📖	
	DisoStat 🔻	DispStat 🗸
Alg Decimal Real Rad 💷	Alg Decimal Real Rad 💷	Alg Decimal Real Rad 💷

Appendix (programs)

