SS2018 - 7. Übung - Prof. Paditz

Aufg. 6.1. 1, 8, 11, 19, 21a), 22a), 24b), 29, 30f)

Aufg. 6.1.1

Die Abkühlung eines Körpers in bewegter Luft ist proportional zu der Temperaturdifferenz zwischen der Temperatur des Körpers und der Temperatur der umgebenden Luft. Wir bezeichnen die Temperatur des Körpers zur Zeit t mit T=T(t), die Temperatur der umgebenden Luft mit TL. Leiten Sie daraus die folgende Differenzialgleichung des Abkühlungsprozesses her:

$$\frac{dT}{dt} = -a \cdot (T(t) - TL).$$

Lösung:

Die Abkühlung bedeutet Temperaturabnahme pro Zeit, d.h.

$$\frac{\Delta T}{\Delta t} = \frac{T(t_2) - T(t_1)}{t_2 - t_1} < 0 \text{ für } t_2 > t_1.$$

Damit ist die Geschwindigkeit der Temperaturveränderung negativ:

$$T'(t) = \frac{dT}{dt} < 0.$$

Sei a>0 ein positiver Proportionalitätsfaktor.

Die Temperaturdifferenz T(t)-TL ist ebenfalls positiv.

Dann ergibt sich nach dem Newtonschen Abkühlungsgesetz die Dgl.

$$T'(t) = -a \cdot (T(t) - TL)$$
.

(vgl. auch http://www.mathe.tu-freiberg.de

/~bernstei/HMI/mNewton.pdf)

Zusatz: Lösung der Dgl. als Anfangswertaufgabe.

Sei T₀=T(0) die Anfangstemperatur und t≥0:

Lösung mit dem CAS:

 $dSolve(T'=-a\cdot(T-TL), t, T, t=0, T=T_0)$

$$\{T=-|TL-T_o|\cdot e^{-a\cdot t}+TL, T=|TL-T_o|\cdot e^{-a\cdot t}+TL\}$$

wegen $T_0 \ge T(t) \ge TL$ folgt:

Define $T(t)=TL+(T_0-TL)\cdot e^{-a\cdot t}$

done

Probe:

Dgl.:

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathsf{T}(t)) = -a \cdot (\mathsf{T}(t) - \mathsf{TL})$$

 $a \cdot (TL-T_0) \cdot e^{-a \cdot t} = a \cdot (TL-T_0) \cdot e^{-a \cdot t}$

AB:

T(0)

 T_{o}

z.B.: $T_0=100[^{\circ}C]$, $TL=20[^{\circ}C]$

t≥0 in Minuten,

Nach 10[min] Abkühlung von 100[°C] auf 60[°C]

 $T_0:=100$

100

TL:=20

20

T(t)

80·e^{-a·t}+20

T(10)=60

 $80 \cdot e^{-10 \cdot a} + 20 = 60$

solve(ans, a)

 $\left\{a = \frac{\ln(2)}{10}\right\}$

approx(ans)

{a=0.06931471806}

Aufg. 6.1.8

Bestimmen Sie die Lösung der exakten

Differenzialgleichung

 $(2x+3\cos(y))dx+(2y-3x\cdot\sin(y))dy=0$ mit $y(0)=\pi/2$:

Lösung: Es handelt sich um eine Anfangswertaufgabe.

AB: $y(0) = \pi/2$

Lösung mit dem CAS:

$$dSolve((2x+3cos(y))+(2y-3x\cdot sin(y))y'=0, x, y, x=0, y=1)$$

$$\left\{ y^2 + 3 \cdot x \cdot \cos(y) = -x^2 + \frac{\pi^2}{4} \right\}$$

Die Lösung y=y(x) in impliziter Darstellung lautet:

$$y^2 + 3 \cdot x \cdot \cos(y) = -x^2 + \frac{\pi^2}{4}$$

Einzelschritte:

DelVar x, y

done

Define $P(x, y)=2x+3\cos(y)$

done

Define $Q(x, y)=2y-3x\cdot\sin(y)$

done

$$\frac{\mathrm{d}}{\mathrm{d}y}(\mathrm{P}(\mathrm{x},\mathrm{y})) = \frac{\mathrm{d}}{\mathrm{d}\mathrm{x}}(\mathrm{Q}(\mathrm{x},\mathrm{y}))$$

$$-3 \cdot \sin(y) = -3 \cdot \sin(y)$$

Damit liegt ein vollständiges Differenzial vor und es existiert eine Stammfunktion F(x,y). Die Lösung der Dgl. lautet F(x,y(x))=const.=c mit c= $F(0,\pi/2)$. Integration:

$$\int_{\square}^{\square} P(x, y) dx + C(y)$$

$$C(y)+x^2+3\cdot x\cdot \cos(y)$$

$$\frac{d}{dy}$$
(ans) =Q(x, y)

$$\frac{d}{dy}(C(y)) - 3 \cdot x \cdot \sin(y) = -3 \cdot x \cdot \sin(y) + 2 \cdot y$$

Hieraus: C'(y)=2y

und $C(y)=y^2$.

Somit F(x, y) =

$$y^2+x^2+3\cdot x\cdot \cos(y)=c$$
 (Lösung der Dgl.)

Define $F(x,y)=y^2+x^2+3\cdot x\cdot \cos(y)$

done

 $c=F(0,\pi/2)$

 $c = \frac{\pi^2}{4}$

Ergebnis:

$$y^2 + x^2 + 3 \cdot x \cdot \cos(y) = \frac{\pi^2}{4}$$
 für y=y(x)

Dgl-Grafik mit Richtungsfeld	Y*;
Euler-Verfahren	
STAT-Editor	

Tabellierung von rechtem(x>0) und linken(x<0)

Kurvenast(y>0)

Daten nach Eulerverfahren als Tabellenkalkulation generiert:

	0	1.570796327	0	F
	0.02687831582	1.570796327	-0.14687831	
	0.05375663165	1.570324289	-0.29375663	
	0.08063494747	1.569341588	-0.44063494	
	0.1075132633	1.56780472	-0.58751326	
	0.1343915791	1.565664434	-0.73439157	
	0.1612698949	1.562864653	-0.88126989	
	0.1881482108	1.559341141	-1.02814821	
	0.2150265266	1.555019804	-1.17502652	
	0.2419048424	1.549814539	-1.32190484	
	0.2687831582	1.54362445	-1.46878315	
	0.2956614741	1.536330205	-1.61566147	
	0.3225397899	1.527789191	-1.76253979	
approx(0.3494181057	1.517828962	-1.90941810	Þ
	0.3762964215	1.506238199	-2.05629642	
	0.4031747374	1.492753957	-2.20317473	
	0.4300530532	1.477043209	-2.35005305	
	0.456931369	1.458675313	-2.49693136	
	0.4838096848	1.437079495	-2.64380968	
	0.5106880007	1.411476325	-2.79068800	
	0.5375663165	1.380761524	-2.93756631	
	0.5644446323	1.343295891	-3.08444463	
	0.5913229481	1.296493134	-3.23132294	
	0.618201264	1.235917874	-3.37820126	
	0.6450795798	1.152984094	-3.52507958	
	0.6719578956	1.027526584	-3.67195789	
	0.6988362114	0.7913366247	-3.81883621	

```
0
              1.570796327
                           0
                                         1.51
0.02687831582 1.570796327
                           -0.1468783158 1.5
0.05375663165 1.570324289
                          -0.2937566316 1.5
0.08063494747 1.569341588
                          -0.4406349475 1.5
0.1075132633 1.56780472
                           -0.5875132633 1.5
0.1343915791 1.565664434
                          -0.73439157911.4
0.1612698949 1.562864653
                          -0.8812698949 1.4
0.1881482108 1.559341141
                          -1.028148211
                                        1.4
0.2150265266 1.555019804 -1.175026527
                                        1.3
0.2419048424 1.549814539
                          -1.321904842
                                        1.3
                           -1.468783158
                                        1.2
0.2687831582
             1.54362445
                                        1.2
0.2956614741
             1.536330205
                          -1.615661474
0.3225397899
             1.527789191
                          -1.76253979
                                        1.1
                                        1.1
0.3494181057 1.517828962
                          -1.909418106
0.3762964215 1.506238199 -2.056296422
                                        1.0
0.4031747374 1.492753957 -2.203174737
                                        1.0
0.4300530532
             1.477043209 -2.350053053
                                        0.9
                                        0.9
0.456931369
             1.458675313 -2.496931369
0.4838096848 1.437079495 -2.643809685
                                        0.8
0.5106880007 1.411476325 -2.790688001
                                        0.8
                                        0.7
0.5375663165 1.380761524 -2.937566316
0.5644446323 1.343295891 -3.084444632
                                        0.6
0.5913229481
                                        0.5
             1.296493134 -3.231322948
                                        0.4
0.618201264
             1.235917874 -3.378201264
0.6450795798 1.152984094 -3.52507958
                                        0.3
                                        0.2
0.6719578956 1.027526584 -3.671957896
[0.6988362114 0.7913366247 -3.818836211
                                        0.0
```

approx(matToList(Tabelle, 1))⇒list1

- {0, 0. 02687831582, 0. 05375663165, 0. 08063494747, ▶ approx(matToList(Tabelle, 2)) ⇒ list2
- $\{1.570796327, 1.570796327, 1.570324289, 1.569341$ approx(matToList(Tabelle, 3)) \Rightarrow list3
- $\{0, -0.1468783158, -0.2937566316, -0.4406349475, \blacktriangleright$ approx(matToList(Tabelle, 4)) \Rightarrow list4

 $\{1.570796327, 1.570796327, 1.558751732, 1.538498$

Parameterdarstellung der Lösung:

$$x^2+3\cdot\cos(y)\cdot x+y^2-\frac{\pi^2}{4}=0$$
 ergibt mit y(t)=t:

solve
$$(x^2+3\cdot\cos(y)\cdot x+y^2-\frac{\pi^2}{4}=0, x)$$

$$\left\{ x = \frac{-\left(3 \cdot \cos(y) - \sqrt{9 \cdot (\cos(y))^2 - 4 \cdot y^2 + \pi^2}\right)}{2}, x = \frac{-\left(3 \cdot \cos(y)\right)^2 - 4 \cdot y^2 + \pi^2}{2} \right\}$$

rechter Kurvenast:

Define xt1(t)=
$$-\frac{3}{2}\cos(t)+\frac{1}{2}\sqrt{9(\cos(t))^2-4t^2+\pi^2}$$

done

Define yt1(t)=t

done

maximaler x-Wert (bei y=0)

xt1(0)

$$\frac{\sqrt{\pi^2+9}}{2} - \frac{3}{2}$$

approx(ans)

0.6719578956

linker Kurvenast:

Define xt2(t)=
$$-\frac{3}{2}\cos(t)-\frac{1}{2}\sqrt{9(\cos(t))^2-4t^2+\pi^2}$$

done

Define yt2(t)=t

done

minimaler x-Wert (bei y=0) xt2(0)

$$\frac{-\sqrt{\pi^2+9}}{2} - \frac{3}{2}$$

approx(ans)

-3.671957896

solve
$$(9(\cos(t))^2-4t^2+\pi^2=0, t)$$

 $\{t=-1.570796327, t=1.570796327\}$
approx $(\pi/2)$

1.570796327

Parameterbereich $-\pi/2 \le t \le \pi/2$,

d.h.
$$-\pi/2 \le y \le \pi/2$$

(alternativ Extremwertberechnung:

$$\frac{\mathrm{d}}{\mathrm{dx}}\left(x^2 + 3 \cdot \cos(y) \cdot x + y^2 - \frac{\pi^2}{4} = 0\right) =$$

$$2x-3\sin(y)y'+2yy'=0|y'=0$$

somit x=0 und

$$x^2 + 3 \cdot \cos(y) \cdot x + y^2 - \frac{\pi^2}{4} = 0 \mid x = 0$$

$$y^2 - \frac{\pi^2}{4} = 0$$
, d.h. $y = \pm \pi/2$)

Hinweis: numerische Lösung der Dgl. mit dem Euler-Verfahren oder Runge-Kutta-Verfahren https://de.wikipedia.org/wiki/Explizites_Euler-Verfahren https://de.wikipedia.org/wiki/Klassisches_Runge-Kutta-Verfahren stop

Aufg. 6.1.11

Durch die Differenzialgleichung 1. Ordnung $m\frac{dv}{dt}$ +kv=mg wird die Sinkgeschwindigkeit v eines Teilchens der Masse m in einer Flüssigkeit beschrieben (k: Reibungsfaktor; g: Erdbeschleunigung).

- a) Bestimmen Sie die allgemeine Lösung v=v(t) durch Trennung der Variablen.
- b) Wie lautet die spezielle Lösung für den Anfangswert $v(0)=v_0$?
- c) Welche Geschwindigkeit v_max kann das Teilchen maximal erreichen?

Lösung:

a) inhom. lin. Dgl. 1.Ordn. mit konst. Koeff. dSolve(m·v'+k·v=m·g,t,v)

$$\left\{ v = \frac{-\left(\left(\mathbf{e}^{-m^{-1} \cdot t + const\left(1\right)}\right)^{k} - \mathbf{g} \cdot \mathbf{m}\right)}{k}, v = \frac{\left(\mathbf{e}^{-m^{-1} \cdot t + const}\right)^{k}}{k}\right\}$$

Ergebnis:

$$v(t) = \frac{\pm \left(e^{-m^{-1} \cdot t + \text{const}(1)}\right)^{k}}{k} + \frac{g \cdot m}{k}$$

$$= \frac{\pm 1}{k} e^{k \cdot \text{const}(1)} \cdot e^{-k \cdot t/m} + \frac{g \cdot m}{k}$$

$$= C \cdot e^{-k \cdot t/m} + \frac{g \cdot m}{k} \text{ mit } C \in \mathbb{R}.$$

$$C = \frac{\pm 1}{k} e^{k \cdot \text{const}(1)} \text{ oder } C = 0$$

TdV:

$$m\frac{dv}{dt}$$
+kv=mg

$$\int_{\square}^{\square} \frac{\mathbf{m}}{\mathbf{m} \cdot \mathbf{g} - \mathbf{k} \cdot \mathbf{v}} d\mathbf{v} = \int_{\square}^{\square} 1 dt + c$$

$$\frac{-\mathbf{m} \cdot \ln(|\mathbf{g} \cdot \mathbf{m} - \mathbf{k} \cdot \mathbf{v}|)}{\mathbf{k}} = \mathbf{c} + \mathbf{t}$$

solve(ans, v)

$$\left\{v = \frac{-e^{-c \cdot k \cdot m^{-1} - k \cdot m^{-1} \cdot t}}{k} + \frac{g \cdot m}{k}, v = \frac{e^{-c \cdot k \cdot m^{-1} - k \cdot m^{-1} \cdot t}}{k}\right\}$$

$$v(t) = C \cdot e^{-k \cdot t/m} + \frac{g \cdot m}{k}$$

b)

Define $v(t)=C \cdot e^{-k \cdot t/m} + \frac{g \cdot m}{k}$

done

$$v(0)=v_0$$

$$C + \frac{g \cdot m}{k} = v_0$$

solve(ans,C)

$$\left\{C = \frac{-g \cdot m}{k} + v_0\right\}$$

Ergebnis:

$$v(t) \mid C = \frac{-g \cdot m}{k} + v_0$$

$$-\left(\frac{\mathbf{g} \cdot \mathbf{m}}{\mathbf{k}} - \mathbf{v_0}\right) \cdot \mathbf{e}^{-\mathbf{k} \cdot \mathbf{m}^{-1} \cdot \mathbf{t}} + \frac{\mathbf{g} \cdot \mathbf{m}}{\mathbf{k}}$$

Define
$$v(t) = \frac{g \cdot m}{k} - \left(\frac{g \cdot m}{k} - v_0\right) \cdot e^{-k \cdot t/m}$$

done

c) v(t) ist streng monoton wachsend bzw. fallend. Es sind m>0, g>0 und k>0.

Fall 1:
$$\frac{g \cdot m}{k} - v_0 > 0 \Rightarrow v(t)$$
 streng mon. wachsend

$$\lim_{t\to\infty} (v(t) | \{m>0, k>0\})$$

g∙m k

Fall 2:
$$\frac{g \cdot m}{k} - v_0 < 0 \Rightarrow v(t)$$
 streng mon. fallend $v(0)$

 $\mathbf{v_0}$

$$v_{max}=max(v(\infty),v(0))=max(\frac{g \cdot m}{k},v_{0})$$

alternativ: Laplacetransformation

DelVar m, k, g, v, t, s

done

laplace $(m \cdot v' + k \cdot v = m \cdot g, t, v, s) | v(0) = v_0$

$$m \cdot (Lp \cdot s - v_0) + Lp \cdot k = \frac{g \cdot m}{s}$$

solve(ans, Lp)

$$\left\{ Lp = \frac{m \cdot (s \cdot v_0 + g)}{s \cdot (m \cdot s + k)} \right\}$$

expand(ans,s)

$$\left\{ Lp = \frac{-\left(g \cdot m^2 - k \cdot m \cdot v_0\right)}{k \cdot \left(m \cdot s + k\right)} + \frac{g \cdot m}{k \cdot s} \right\}$$

$$v = \mathcal{L}_{s}^{-1} \left(\frac{-\left(\mathbf{g} \cdot \mathbf{m}^{2} - \mathbf{k} \cdot \mathbf{m} \cdot \mathbf{v}_{0} \right)}{\mathbf{k} \cdot \left(\mathbf{m} \cdot \mathbf{s} + \mathbf{k} \right)} \right) [t] + \mathcal{L}_{s}^{-1} \left(\frac{\mathbf{g} \cdot \mathbf{m}}{\mathbf{k} \cdot \mathbf{s}} \right) [t]$$

$$v = \frac{-g \cdot m \cdot e^{-k \cdot m^{-1} \cdot t}}{k} + v_0 \cdot e^{-k \cdot m^{-1} \cdot t} + \frac{g \cdot m}{k}$$

d.h.
$$v(t) = \frac{g \cdot m}{k} - \left(\frac{g \cdot m}{k} - v_0\right) \cdot e^{-k \cdot t/m}$$

stop

Aufg. 6.1.19

Das menschliche Lernen bzw. Vergessen läßt sich durch ein Modell beschreiben, aus dem sich die folgende Diffenzialgleichung ergibt: $p'(t) = -\lambda(p(t) - a)$.

Dabei bezeichnen p(t) den Wissensstand zum Zeitpunkt t≥0, λ und a vom jeweiligen Individuum abhängige Konstanten (λ>0 charakterisiert die Schnelligkeit des Lernens bzw. Vergessens, a∈(0,100)[%] das maximal aufnehmbare Wissens beim Lernen bzw. das Wissen, das nie vergessen wird).

Entsprechend lautet die Anfangsbedingung beim Lernen: p(0)=0 bzw. beim Vergessen: p(0)=100[%].

Lösen Sie die beiden Anfangswertprobleme, skizzieren Sie die Lösungskurven und interpretieren Sie den Kurvenverlauf!

Lösung: (TdV)

inhom. lin. Dgl. 1. Ordn. mit konst. Koeff. dSolve(p'=-λ·(p-a),t,p)

$$\{p=e^{-t \cdot \lambda} \cdot \operatorname{const}(1) + a\}$$

allgem. Lösung der Dgl.:

$$p(t)=C \cdot e^{-t \cdot \lambda} + a$$
, $C \in \mathbb{R}$.

Der Lernprozeß: AB p(0)=0

$$dSolve(p'=-\lambda \cdot (p-a), t, p, t=0, p=0) \mid a>0$$

$$\{p=-a \cdot e^{-t \cdot \lambda} + a, p=a \cdot e^{-t \cdot \lambda} + a\}$$

Scheinlösung: $p=a \cdot e^{-t \cdot \lambda} + a > a > 0$ entfällt.

Lösung (Lernprozeß):

$$p(t)=a-a\cdot e^{-t\cdot \lambda}=a\cdot (1-e^{-t\cdot \lambda}), t\geq 0.$$

a ... maximal aufnehmbare Wissen (z.B.a=90[%])

Lornkuryo	Y1:	
ŀ	Lernkurve	¥2:

https://de.wikipedia.org/wiki/Lernkurve

Der Prozeß des Vergessens: AB p(0)=100

 $dSolve(p'=-\lambda \cdot (p-a), t, p, t=0, p=100) | a<100$

$$\{p=(a-100)\cdot e^{-t\cdot\lambda}+a, p=-(a-100)\cdot e^{-t\cdot\lambda}+a\}$$

Scheinlösung: $(a-100) \cdot e^{-t \cdot \lambda} + a = -(100-a) \cdot e^{-t \cdot \lambda} + a < a$

Lösung (Prozeß des Vergessens):

$$p(t)=(100-a)\cdot e^{-t\cdot\lambda}+a, t\geq 0.$$

a ... Wissen, das nie vergessen wird (z.B.a=10[%])

Vergessenskurve	Y1: Y2:
-----------------	------------

https://de.wikipedia.org/wiki/Vergessenskurve

Aufg. 6.1.21a)

Lösen Sie die folgende Differenzialgleichung 1. Ordnung: $x^2 \cdot y' = y^2$.

Lösung:

nichtlineare Dgl. $y' = \left(\frac{y}{x}\right)^2$ mit y' > 0 für y = y(x).

$$dSolve(x^2 \cdot y' = y^2, x, y)$$

$$\left\{y = \frac{x}{x \cdot \text{const}(1) + 1}\right\}$$

Lösung x≠-1/C, C∈R,

$$y(x) = \frac{x}{C \cdot x + 1} = \frac{1}{C + 1/x}$$
, für $x \neq 0$,

Dgl-Grafik Y':--

Probe:

$$\frac{d}{dx} \left(\frac{x}{C \cdot x + 1} \right) > 0$$

$$\frac{1}{(C \cdot x + 1)^2} > 0$$

$$\frac{d}{dx} \left(\frac{1}{C+1/x} \right) > 0$$

$$\frac{1}{(C \cdot x + 1)^2} > 0$$

Lösung per Hand: TdV $dy/y^2=dx/x^2$

$$\int_{\square}^{\square} \frac{1}{y^2} dy = \int_{\square}^{\square} \frac{1}{x^2} dx - C$$

$$\frac{-1}{y}$$
=-C- $\frac{1}{x}$

solve(ans,y)

$$\left\{y = \frac{x}{C \cdot x + 1}\right\}$$

alternativ: Ähnlichkeitsdifferenzialgleichung

vgl. auch Riccati-Dgl. mit der part. Lös. y=x

https://de.wikipedia.org/wiki/Riccatische_Differentialglei

Aufg. 6.1.22a)

Lösen Sie die Differenzialgleichung 1. Ordnung

y'+2y=cos(x) durch Variation der Konstanten. Wie lautet die spezielle Lösung mit der Anfangsbedingung $y(\pi)=1$?

Lösung:

inhom. lin. Dgl. 1. Ordn. mit konst. Koeff.

 $dSolve(y'+2y=cos(x), x, y, x=\pi, y=1)$

$$\left\{ y = \frac{7 \cdot e^{-2 \cdot x + 2 \cdot \pi}}{5} + \frac{2 \cdot \cos(x)}{5} + \frac{\sin(x)}{5} \right\}$$

homogene Dgl.:

dSolve(y'+2y=0,x,y)

$${y=e^{-2\cdot x}\cdot const(1)}$$

VdK für y'+2y=cos(x)

Define $y(x)=C(x) \cdot e^{-2 \cdot x}$

done

$$\frac{d}{dx}(y(x))$$

$$\left(\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{C}(\mathrm{x})) - 2 \cdot \mathrm{C}(\mathrm{x})\right) \cdot e^{-2 \cdot \mathrm{x}}$$

ans+2y(x)=cos(x)

$$\left(\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{C}(\mathrm{x})) - 2 \cdot \mathrm{C}(\mathrm{x})\right) \cdot e^{-2 \cdot \mathrm{x}} + 2 \cdot e^{-2 \cdot \mathrm{x}} \cdot \mathrm{C}(\mathrm{x}) = \cos(\mathrm{x})$$

simplify(ans)

$$\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{C}(\mathrm{x})) \cdot e^{-2 \cdot \mathrm{x}} = \cos(\mathrm{x})$$

$$C'(x) = cos(x) \cdot e^{2 \cdot x}$$

$$\int_{\Box}^{\Box} \cos(\mathbf{x}) \cdot \mathbf{e}^{2 \cdot \mathbf{x}} d\mathbf{x}$$

$$\frac{2 \cdot \cos(x) \cdot e^{2 \cdot x} + \sin(x) \cdot e^{2 \cdot x}}{5}$$

allgem. Lösung der inhom. Dgl.:

$$y(x)=C \cdot e^{-2 \cdot x} + \frac{2 \cdot \cos(x) \cdot e^{2 \cdot x} + \sin(x) \cdot e^{2 \cdot x}}{5} \cdot e^{-2 \cdot x}, d.h.$$

$$y(x)=C \cdot e^{-2 \cdot x} + \frac{2 \cdot \cos(x) + \sin(x)}{5}$$
.

AB:

$$C \cdot e^{-2 \cdot x} + \frac{2 \cdot \cos(x) + \sin(x)}{5} = 1 \mid x = \pi$$

$$C \cdot e^{-2 \cdot \pi} - \frac{2}{5} = 1$$

solve(ans,C)

$$\left\{C = \frac{7 \cdot e^{2 \cdot \pi}}{5}\right\}$$

Ergebnis:

$$y(x) = \frac{7 \cdot e^{2 \cdot \pi}}{5} \cdot e^{-2 \cdot x} + \frac{2 \cdot \cos(x) + \sin(x)}{5}, \quad d. h.$$

$$y(x) = \frac{1}{5} \left(e^{2 \cdot \pi - 2 \cdot x} + 2 \cdot \cos(x) + \sin(x) \right)$$

Aufg. 6.1.24b)

Lösen Sie die folgende Differenzialgleichung 1. Ordnung mit Hilfe einer geeigneten Substitution: $y'=\sin\left(\frac{y}{x}\right)+\frac{y}{x}$.

Lösung: nichtlin. Dgl. 1. Ordnung (Ähnlichkeitsdifferentialgleichung)

dSolve(y'=
$$\sin\left(\frac{y}{x}\right) + \frac{y}{x}$$
, x, y) |x>0

$$\{y=-2\cdot x\cdot \tan^{-1}\left(x\cdot e^{\operatorname{const}(1)}\right) + 2\cdot x\cdot \pi\cdot \operatorname{constn}(1), y=2\cdot x\cdot \tan^{-1}\left(x\cdot e^{\operatorname{const}(1)}\right) \}$$

dSolve(y'= $\sin\left(\frac{y}{x}\right) + \frac{y}{x}$, x, y) | x<0

$${y=-2\cdot x\cdot tan^{-1}(x\cdot e^{const(1)})+2\cdot x\cdot \pi\cdot constn(1), y=2\cdot x\cdot tan^{-1}}$$

 $y(x)=2\cdot x\cdot \arctan(x\cdot C)+2\cdot x\cdot \pi\cdot k$, $C=\pm e^C$ oder C=0,

 $k=0,\pm 1,\pm 2,...$

d.h.

 $y(x)=2x\cdot(\arctan(x\cdot C)+k\cdot\pi)$, $C\in \mathbb{R}$, $k\in \mathbb{Z}$.

per Hand: Subst. z(x)=y(x)/x

bzw. y(x)=x*z(x)

y'=z+x*z'

in Dgl. eingesetzt:

 $z+x*z'=\sin(z)+z$, d.h.

 $x*z'=\sin(z)$, TdV ($z\neq0$, d.h. $y\neq0$)

$$\int_{-1}^{1} \frac{1}{\sin(z)} dz = \int_{-1}^{1} \frac{1}{x} dx + c$$

 $\ln\left(\left|\tan\left(\frac{z}{2}\right)\right|\right) = \ln\left(\left|x\right|\right) + c$

 e^{ans}

$$\left|\tan\left(\frac{\mathbf{z}}{2}\right)\right| = |\mathbf{x}| \cdot \mathbf{e}^{\mathsf{C}}$$

$$\tan\left(\frac{z}{2}\right) = \pm x \cdot e^{c} = C \cdot x$$
, $C = \pm e^{c} \neq 0$,

Umkehrfunktion und Periodizität $k \cdot \pi$ der tan-Fkt.

beachten

$$\frac{z}{2}$$
 = arctan (C·x) + k· π = $\frac{y}{2x}$

 $y=2x\cdot(\arctan(C\cdot x)+k\cdot\pi)$ (reguläre Lösung)

speziell C=0: $y=x\cdot 2k\pi$

Fall y=const.=0 ergibt die singuläre Lösung (C=0, k=0)

Aufg. 6.1.29

Ein Körper der Masse m fällt mit der Anfangsgeschwindigkeit v(0)=0 aus der Ruhelage x(0)=0 in einem Medium, dessen Reibungswiderstand proportional zum Quadrat der Geschwindigkeit x' ist.

a) Lösen Sie die zugehörige Newtonsche
 Bewegungsgleichung m·x"=m·g-β·(x')² (Dgl. des Sinkvorganges, z.B. auch Fallschirmspringen).
 (Achtung: Druckfehler im Lösungsheft)

Hinweis: Leiten Sie zunächst eine Differenzialgleichung mit der Geschwindigkeit v(t)=x'(t) her (Sedimentationsgeschwindigkeit, Sinkgeschwindigkeit, Riccati-Dgl.).

- b) Diskutieren Sie für große Zeiten t den Ort x(t) und die Geschwindigkeit v(t).
- c) Nach welcher Zeit τ hat der Körper die Höhe h durchfallen?

Fall mit Luftwiderstand: Newton-Reibung, vgl. https://de.wikipedia.org/wiki/Fall_mit_Luftwiderstand siehe auch Aufg. 4.6 (Fallschirmspringen) in http://gl.jkg-reutlingen.de/MAG/SKRIPT Wachstum.pdf

Lösung:

a)

DelVar m, g, β, t, x, v

done

Lösung des AWP für v(t):

$$v'=g-\frac{\beta}{m}v^2$$
, $v=v(t)$ und $v(0)=0$.

allgemeine Lösung:

TdV-Dgl.
$$\frac{dv}{g-\frac{\beta}{m}v^2}$$
=dt

$$\int_{\Box}^{\Box} \frac{1}{\mathbf{g} - \frac{B}{\mathbf{m}} \mathbf{v}^{2}} d\mathbf{v} = \frac{\mathbf{m}}{B} \int_{\Box}^{\Box} \frac{1}{\frac{\mathbf{g} \cdot \mathbf{m}}{B} - \mathbf{v}^{2}} d\mathbf{v} = \mathbf{t} + C1$$

PBZ:
$$\frac{1}{\frac{\mathbf{g} \cdot \mathbf{m}}{R} - \mathbf{v}^2} = \frac{\mathbf{A}}{\varepsilon - \mathbf{v}} + \frac{\mathbf{B}}{\varepsilon + \mathbf{v}}$$

ergibt mit
$$\varepsilon = \sqrt{\frac{g \cdot m}{B}}$$
: $A = B = \frac{1}{2\varepsilon}$

$$\frac{m}{B} \int_{\Box}^{\Box} \frac{A}{\epsilon - v} + \frac{B}{\epsilon + v} dv = t + C1$$

$$\frac{-\mathbf{m} \cdot (\mathbf{A} \cdot \ln(|\mathbf{v} - \boldsymbol{\varepsilon}|) - \mathbf{B} \cdot \ln(|\mathbf{v} + \boldsymbol{\varepsilon}|))}{\beta} = \mathbf{C} \mathbf{1} + \mathbf{t}$$

ans $A = \frac{1}{2\varepsilon}$ and $B = \frac{1}{2\varepsilon}$

$$\frac{\mathbf{m} \cdot \left(\frac{\ln(|\mathbf{v} + \varepsilon|)}{2 \cdot \varepsilon} - \frac{\ln(|\mathbf{v} - \varepsilon|)}{2 \cdot \varepsilon}\right)}{B} = C1 + t$$

AB v(0)=0 beachten:

ans |v=0| and t=0

0=C1

simplify
$$\left(\frac{m \cdot \left(\frac{\ln(|v+\epsilon|)}{2 \cdot \epsilon} - \frac{\ln(|v-\epsilon|)}{2 \cdot \epsilon}\right)}{B} = t\right)$$

$$\frac{\mathbf{m} \cdot \ln \left(\left| \frac{\mathbf{v} + \mathbf{\varepsilon}}{\mathbf{v} - \mathbf{\varepsilon}} \right| \right)}{2 \cdot \beta \cdot \mathbf{\varepsilon}} = \mathbf{t}$$

 e^{ans}

$$\left(\left|\frac{\mathbf{v}+\mathbf{\varepsilon}}{\mathbf{v}-\mathbf{\varepsilon}}\right|\right)^{\frac{\mathbf{m}}{2\boldsymbol{\cdot}\boldsymbol{\beta}\boldsymbol{\cdot}\boldsymbol{\varepsilon}}} = \mathbf{e}^{t}$$

$$\frac{\frac{\mathbf{v}+\mathbf{\varepsilon}}{\mathbf{v}-\mathbf{\varepsilon}}=\pm \left(\mathbf{e}^{t}\right)^{\frac{2\cdot\boldsymbol{\beta}\cdot\mathbf{\varepsilon}}{\mathbf{m}}} \quad \text{mit AB } \mathbf{v}(0)=0$$

$$solve(\frac{v+\varepsilon}{v-\varepsilon}=-(e^t)^{\frac{2\cdot\beta\cdot\varepsilon}{m}},v)$$

$$\left\{ v = \frac{\varepsilon \cdot \left(e^{2 \cdot m^{-1} \cdot t \cdot \beta \cdot \varepsilon_{-1}} \right)}{e^{2 \cdot m^{-1} \cdot t \cdot \beta \cdot \varepsilon_{+1}}} \right\}$$

$$v=\varepsilon \cdot \tanh(m^{-1} \cdot t \cdot \beta \cdot \varepsilon) \mid \varepsilon = \sqrt{\frac{g \cdot m}{\beta}}$$

$$v = \sqrt{\frac{g \cdot m}{\beta}} \cdot \tanh \left(\frac{t \cdot \beta \cdot \sqrt{\frac{g \cdot m}{\beta}}}{m} \right)$$

$$v(t) = \sqrt{\frac{g \cdot m}{\beta}} \cdot \tanh\left(t \cdot \sqrt{\frac{g \cdot \beta}{m}}\right)$$

$$x(t) = \int_{\Box}^{\Box} v(t) dt$$
 ergibt:

$$\int_{\square}^{\square} \sqrt{\frac{\mathbf{g} \boldsymbol{\cdot} \mathbf{m}}{\mathcal{B}}} \boldsymbol{\cdot} t \mathbf{a} \mathbf{n} \mathbf{h} \bigg(t \boldsymbol{\cdot} \sqrt{\frac{\mathbf{g} \boldsymbol{\cdot} \mathcal{B}}{\mathbf{m}}} \hspace{0.1cm} \bigg) dt$$

$$\frac{m \cdot \sqrt{\frac{g \cdot \mathcal{B}}{m}} \cdot \sqrt{\frac{g \cdot m}{\mathcal{B}}} \cdot \ln \left(\left| \cosh \left(t \cdot \sqrt{\frac{g \cdot \mathcal{B}}{m}} \right) \right| \right)}{g \cdot \mathcal{B}}$$

$$x(t) = \frac{m}{\beta} \cdot \ln \left(\cosh \left(t \cdot \sqrt{\frac{g \cdot \beta}{m}} \right) \right)$$

stop

alternativer Lösungsweg:

https://de.wikipedia.org/wiki/Riccatische_Differentialglei

part. Lös. (für v'=0)
$$v=\sqrt{\frac{g \cdot m}{\beta}}$$

Subst.:
$$v(t)=z(t)+\sqrt{\frac{g\cdot m}{B}}$$
, $v'=z'$

$$z'=g-\frac{\beta}{m}\cdot(z+\sqrt{\frac{g\cdot m}{\beta}})^2$$
, d.h.

$$z' = -\frac{\beta}{m} \cdot z^2 - 2\frac{\beta}{m} \cdot \sqrt{\frac{g \cdot m}{\beta}} z$$

d.h. Übergang in Bernolli-Dgl.

https://de.wikipedia.org/wiki/Bernoullische_Differentialgl

Subst.:
$$u(t)=1/z(t)$$
 ergibt $z=1/u$, $z'=-1/u^2*u'$

$$-1/u^2*u'=-\frac{\beta}{m}/u^2-2\frac{\beta}{m}\cdot\sqrt{\frac{g\cdot m}{\beta}}/u |u^2|$$

$$-u'=-\frac{\beta}{m}-2\frac{\beta}{m}\cdot\sqrt{\frac{g\cdot m}{\beta}}u$$
, d.h. lin. Dgl.

$$u'-2\frac{\beta}{m}\cdot\sqrt{\frac{g\cdot m}{\beta}}u=\frac{\beta}{m}$$
 usw.

dSolve(v'=g- $\frac{\beta}{m}$ ·v²,t,v)|m>0|g>0| β >0

$$\left\{ v = \frac{\sqrt{g \cdot m \cdot \beta} \cdot \tanh\left(\frac{t \cdot \sqrt{g \cdot m \cdot \beta}}{m} + \sqrt{g \cdot m \cdot \beta} \cdot \text{const}(1)\right)}{\beta} \right\}$$

Anfangsbedingung v(0)=0

$$\frac{\sqrt{\mathbf{g} \cdot \mathbf{m} \cdot \boldsymbol{\beta}} \cdot \tanh\left(\frac{0 \cdot \sqrt{\mathbf{g} \cdot \mathbf{m} \cdot \boldsymbol{\beta}}}{\mathbf{m}} + \sqrt{\mathbf{g} \cdot \mathbf{m} \cdot \boldsymbol{\beta}} \cdot \mathbf{C}\right)}{\mathbf{\beta}} = 0$$

$$\frac{\tanh\left(\mathbf{C}\cdot\sqrt{\mathbf{g}\cdot\mathbf{m}\cdot\boldsymbol{\beta}}\right)\cdot\sqrt{\mathbf{g}\cdot\mathbf{m}\cdot\boldsymbol{\beta}}}{\boldsymbol{\beta}}=0$$

solve(ans,C)

 $\{C=0\}$

$$\tanh\left(\sqrt{\frac{\mathbf{g}\cdot\boldsymbol{\beta}}{\mathbf{m}}}\cdot\mathbf{t}\right) = \frac{e^{2\sqrt{\frac{\mathbf{g}\cdot\boldsymbol{\beta}}{\mathbf{m}}}}\cdot\mathbf{t}_{-1}}{e^{2\sqrt{\frac{\mathbf{g}\cdot\boldsymbol{\beta}}{\mathbf{m}}}}\cdot\mathbf{t}_{+1}}$$

Define $v(t) = \sqrt{\frac{g \cdot m}{\beta}} \cdot \tanh(\sqrt{\frac{g \cdot \beta}{m}} \cdot t)$

done

Probe in Dgl.

$$\frac{\mathrm{d}}{\mathrm{dt}}(\mathbf{v}(\mathbf{t})) \mid \mathbf{m} > 0 \mid \mathbf{g} > 0 \mid \boldsymbol{\beta} > 0$$

$$\frac{\sqrt{g \boldsymbol{\cdot} m} \boldsymbol{\cdot} \sqrt{g \boldsymbol{\cdot} \beta}}{\sqrt{m} \boldsymbol{\cdot} \sqrt{\beta} \boldsymbol{\cdot} \left(\cosh \left(\frac{t \boldsymbol{\cdot} \sqrt{g \boldsymbol{\cdot} \beta}}{\sqrt{m}}\right)\right)^2}$$

Kürzen:

$$\frac{\sqrt{g \cdot m} \cdot \sqrt{g \cdot \beta}}{\sqrt{m} \cdot \sqrt{\beta} \cdot \left(\cosh\left(\frac{t \cdot \sqrt{g \cdot \beta}}{\sqrt{m}}\right) \right)^2} = \frac{g}{\left(\cosh\left(\frac{t \cdot \sqrt{g \cdot \beta}}{\sqrt{m}}\right) \right)^2}$$

linke Seite:
$$v'(t) = \frac{g}{\left(\cosh\left(\frac{t \cdot \sqrt{g \cdot B}}{\sqrt{m}}\right)\right)^2}$$

rechte Seite: $g - \frac{\beta}{m} \cdot v^2$

$$g-\frac{\beta}{m}\cdot(v(t))^2|m>0|g>0|\beta>0$$

$$-g \cdot \left(\tanh \left(\frac{t \cdot \sqrt{g \cdot \beta}}{\sqrt{m}} \right) \right)^2 + g$$

factorOut(ans, g)

$$-g \cdot \left(\left(\tanh \left(\frac{t \cdot \sqrt{g \cdot \beta}}{\sqrt{m}} \right) \right)^2 - 1 \right)$$

Es gilt:
$$1-(\tanh(u))^2 = \frac{1}{(\cosh(u))^2}$$

 $trigToExp((cosh(u))^2-(sinh(u))^2=1)$

1=1

v(t)

$$\sqrt{\frac{\mathbf{g} \cdot \mathbf{m}}{\beta}} \cdot \tanh \left(\mathbf{t} \cdot \sqrt{\frac{\mathbf{g} \cdot \beta}{\mathbf{m}}} \right)$$

Lösung des AWP für x(t):

 $dSolve(x'=v(t),t,x)|m>0|g>0|\beta>0$

$$\left\{ x = \frac{\sqrt{m} \cdot \sqrt{g \cdot m} \cdot \sqrt{g \cdot \beta} \cdot \ln \left(\cosh \left(\frac{t \cdot \sqrt{g \cdot \beta}}{\sqrt{m}} \right) \right)}{g \cdot \beta^{\frac{3}{2}}} + \text{const}(1) \right\}$$

AB x(0)=0 einsetzen:

$$\frac{\sqrt{\mathbf{m}} \cdot \sqrt{\mathbf{g} \cdot \mathbf{m}} \cdot \sqrt{\mathbf{g} \cdot \boldsymbol{\beta}} \cdot \ln \left(\cosh \left(\frac{0 \cdot \sqrt{\mathbf{g} \cdot \boldsymbol{\beta}}}{\sqrt{\mathbf{m}}} \right) \right)}{\frac{3}{\mathbf{g} \cdot \boldsymbol{\beta}}^{\frac{3}{2}}} + C = 0$$

C=0

Define $x(t) = \frac{m}{\beta} \ln \left(\cosh \left(\sqrt{\frac{g \cdot \beta}{m}} t \right) \right)$

done

x(t)

$$\frac{\mathrm{m} \cdot \ln \left(\cosh \left(t \cdot \sqrt{\frac{\mathbf{g} \cdot \boldsymbol{\beta}}{\mathbf{m}}} \right) \right)}{\boldsymbol{\beta}}$$

$$\frac{d}{dt}(x(t))$$

$$\frac{m \cdot \sqrt{\frac{g \cdot \beta}{m}} \cdot \sinh \left(t \cdot \sqrt{\frac{g \cdot \beta}{m}}\right)}{\beta \cdot \cosh \left(t \cdot \sqrt{\frac{g \cdot \beta}{m}}\right)}$$

v(t)=simplify(ans)

$$\sqrt{\frac{\mathbf{g} \cdot \mathbf{m}}{B}} \cdot \tanh\left(\mathbf{t} \cdot \sqrt{\frac{\mathbf{g} \cdot B}{\mathbf{m}}}\right) = \frac{\mathbf{m} \cdot \sqrt{\frac{\mathbf{g} \cdot B}{\mathbf{m}}} \cdot \tanh\left(\mathbf{t} \cdot \sqrt{\frac{\mathbf{g} \cdot B}{\mathbf{m}}}\right)}{B}$$

Probe:

linke Seite der Dgl.:

$$m \cdot \frac{d^2}{dt^2}(x(t))$$

$$\frac{m \cdot \left(g \cdot \left(\cosh\left(t \cdot \sqrt{\frac{g \cdot \beta}{m}}\right)\right)^2 - g \cdot \left(\sinh\left(t \cdot \sqrt{\frac{g \cdot \beta}{m}}\right)\right)^2\right)}{\left(\cosh\left(t \cdot \sqrt{\frac{g \cdot \beta}{m}}\right)\right)^2}$$

simplify(ans)

$$-m \cdot \left(g \cdot \left(\tanh\left(t \cdot \sqrt{\frac{g \cdot \beta}{m}}\right)\right)^2 - g\right)$$

factorOut(ans, m·g)

$$-g \cdot m \cdot \left(\left(\tanh \left(t \cdot \sqrt{\frac{g \cdot \beta}{m}} \right) \right)^2 - 1 \right)$$

rechte Seite der Dgl.:

$$m \cdot g - \beta \cdot \left(\frac{d}{dt}(x(t))\right)^2$$

$$g \cdot m - \frac{g \cdot m \cdot \left(\sinh \left(t \cdot \sqrt{\frac{g \cdot \beta}{m}} \right) \right)^2}{\left(\cosh \left(t \cdot \sqrt{\frac{g \cdot \beta}{m}} \right) \right)^2}$$

simplify(ans)

$$-m \cdot \left(g \cdot \left(\tanh\left(t \cdot \sqrt{\frac{g \cdot \beta}{m}}\right)\right)^2 - g\right)$$

factorOut(ans, m·g)

$$-g \cdot m \cdot \left(\left(\tanh \left(t \cdot \sqrt{\frac{g \cdot \beta}{m}} \right) \right)^2 - 1 \right)$$

stop

b) große Zeiten t (und Grenzfall t=∞)

x(t)

$$\frac{m \cdot \ln \left(\cosh \left(t \cdot \sqrt{\frac{g \cdot \beta}{m}} \right) \right)}{\beta}$$

v(t)

$$\sqrt{\frac{\mathbf{g} \cdot \mathbf{m}}{\beta}} \cdot \tanh \left(\mathbf{t} \cdot \sqrt{\frac{\mathbf{g} \cdot \beta}{\mathbf{m}}} \right)$$

Vermutung: x(t)≈v(t)·t für große t.

Grenzfall: (endloses Fallen, für große t mit konst. Geschwindgkeit)

$$\lim_{t\to\infty} (x(t)) |m>0|g>0|\beta>0$$

00

$$\lim_{t\to\infty} (v(t)) |m>0|g>0|\beta>0$$

 $\frac{\sqrt{\mathbf{g} \cdot \mathbf{m}}}{\sqrt{\beta}}$

Es gilt:

$$\lim_{t\to\infty} \left(\tanh \left(t \cdot \sqrt{\frac{g \cdot \beta}{m}} \right) \right) = 1 \mid m > 0 \mid g > 0 \mid \beta > 0$$

1=1

stop

c)

x(t)

$$\frac{m \cdot \ln \left(\cosh \left(t \cdot \sqrt{\frac{g \cdot \beta}{m}} \right) \right)}{\beta}$$

solve(x(t)=h,t)|m>0|g>0| β >0

$$\left\{ t = \frac{-\sqrt{m} \cdot \cosh^{-1} \left(e^{h \cdot m^{-1} \cdot \beta} \right)}{\sqrt{g \cdot \beta}}, t = \frac{\sqrt{m} \cdot \cosh^{-1} \left(e^{h \cdot m^{-1} \cdot \beta} \right)}{\sqrt{g \cdot \beta}} \right\}$$

Die neg. Lösung entfällt, d.h.

$$\tau = \sqrt{\frac{m}{g \cdot B}} \cdot \operatorname{arcosh}(e^{h \cdot \beta/m})$$

Es gilt für u≥0:

Areafunktion arcosh(u)=cosh-1(u) (Umkehrfunktion)

$$\cosh^{-1}(u) = \ln(u + \sqrt{u^2 - 1})$$

somit eine andere Darstellung:

$$\tau = \sqrt{\frac{m}{\mathbf{g} \cdot \boldsymbol{\beta}}} \cdot \ln \left(\mathbf{e}^{\mathbf{h} \cdot \boldsymbol{\beta} / \mathbf{m}} + \sqrt{\mathbf{e}^{2\mathbf{h} \cdot \boldsymbol{\beta} / \mathbf{m}} - 1} \right)$$

stop

Aufg. 6.1.30f)

Lösen Sie das folgende Anfangswertproblem:

$$y''+4y=-2\sin(2x)$$
, $y(0)=1$, $y'(0)=1$

Lösung:

inhom. lin. Dgl. 2. Ordnung mit konst. Koeff.

Startpunkt: y(0)=1,

"Startgeschwindigkeit" (Anstieg): y'(0)=1

Mit dem dSolve-Befehl

dSolve(y''+4y=-2sin(2x), x, y, x=0, y=1, x=0, y'=1)

$$\left\{ y = \frac{x \cdot \cos(2 \cdot x)}{2} + \cos(2 \cdot x) + \frac{\sin(2 \cdot x)}{4} \right\}$$

elementare Rechnung: charakt. Gl.

 λ^2 +4=0 ergibt λ =±2*i*, hieraus y_hom=C1*cos(2x)+C2*sin(2x),

Störfkt. (Resonanzfall): -2sin(2x)

Ansatz:

DelVar A, B, x

done

Define $y_p(x)=x*(A*cos(2x)+B*sin(2x))$

done

$$\frac{d^2}{dx^2}(y_p(x)) + 4y_p(x) = -2\sin(2x) \Rightarrow Gl$$

 $4 \cdot x \cdot (A \cdot \cos(2 \cdot x) + B \cdot \sin(2 \cdot x)) - 4 \cdot A \cdot x \cdot \cos(2 \cdot x) - 4 \cdot B \cdot x \cdot \sin(x)$ Gl | x=0

4.B=0

 $Gl \mid x=\pi/4$

 $-4 \cdot A = -2$

 $y_p(x) | B=0 \text{ and } A=1/2$

 $\frac{x \cdot \cos(2 \cdot x)}{2}$

Define $y(x)=C1\cdot\cos(2x)+C2\cdot\sin(2x)+\frac{x\cdot\cos(2\cdot x)}{2}$

done

y(0)=1

C1=1

$$\frac{d}{dx}(y(x))=1|x=0$$
 and C1=1

$$\frac{4 \cdot \text{C2+1}}{2} = 1$$

C2=1/4

Ergebnis:
$$y(x) = \cos(2x) + \frac{1}{4}\sin(2x) + \frac{x \cdot \cos(2x)}{2}$$

VdK: $y(x)=C1(x)\cdot\cos(2x)+C2(x)\cdot\sin(2x)$

$$\begin{bmatrix} \cos(2x) & \sin(2x) \\ \frac{d}{dx}(\cos(2x)) & \frac{d}{dx}(\sin(2x)) \end{bmatrix} * \begin{bmatrix} C1'(x) \\ C2'(x) \end{bmatrix} = \begin{bmatrix} 0 \\ -2\sin(2x) \end{bmatrix}$$

$$\begin{bmatrix} \cos(2x) & \sin(2x) \\ -2\sin(2x) & 2\cos(2x) \end{bmatrix}^{-1} * \begin{bmatrix} 0 \\ -2\sin(2x) \end{bmatrix}$$

$$\left[\frac{\frac{2 \cdot (\sin(2 \cdot x))^{2}}{2 \cdot (\cos(2 \cdot x))^{2} + 2 \cdot (\sin(2 \cdot x))^{2}}}{\frac{-2 \cdot \cos(2 \cdot x) \cdot \sin(2 \cdot x)}{2 \cdot (\cos(2 \cdot x))^{2} + 2 \cdot (\sin(2 \cdot x))^{2}}}\right]$$

simplify(ans)

$$\begin{bmatrix} (\sin(2\cdot x))^2 \\ -\sin(4\cdot x) \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} \int_{\square}^{\square} (\sin(2 \cdot \mathbf{x}))^2 d\mathbf{x} \\ \int_{\square}^{\square} \frac{-\sin(4 \cdot \mathbf{x})}{2} d\mathbf{x} \end{bmatrix}$$

$$\begin{bmatrix} \frac{4 \cdot x - \sin(4 \cdot x)}{8} \\ \frac{\cos(4 \cdot x)}{8} \end{bmatrix}$$

$$\operatorname{trn}\left(\begin{bmatrix} \frac{4 \cdot x - \sin(4 \cdot x)}{8} \\ \frac{\cos(4 \cdot x)}{8} \end{bmatrix}\right) * \begin{bmatrix} \cos(2x) \\ \sin(2x) \end{bmatrix}$$

$$\left[\frac{(4\cdot x - \sin(4\cdot x))\cdot \cos(2\cdot x)}{8} + \frac{\cos(4\cdot x)\cdot \sin(2\cdot x)}{8}\right]$$

simplify(ans)

$$\left[\frac{4 \cdot x \cdot \cos(2 \cdot x) - \sin(2 \cdot x)}{8}\right]$$

$$\frac{4 \cdot x \cdot \cos(2 \cdot x) - \sin(2 \cdot x)}{8} = \frac{x \cdot \cos(2 \cdot x)}{2} - \frac{\sin(2 \cdot x)}{8}$$

$$y_p(x) = \frac{x \cdot \cos(2 \cdot x)}{2}$$
, für hom. Dgl.: $-\frac{\sin(2 \cdot x)}{8}$

Mit Laplace-Transformation:

DelVar x, y

done

laplace(y"+ $4 \cdot y = -2 \cdot \sin(2 \cdot x)$, x, y, t)

$$-t \cdot y(0) - y'(0) + Lp \cdot t^2 + 4 \cdot Lp = \frac{-4}{t^2 + 4}$$

ans |y(0)=1| and y'(0)=1

$$Lp \cdot t^2 + 4 \cdot Lp - t - 1 = \frac{-4}{t^2 + 4}$$

solve(ans, Lp)

$$\left\{ Lp = \frac{t^3 + t^2 + 4 \cdot t}{(t^2 + 4)^2} \right\}$$

Partialbruchzerlegung:

expand
$$(\frac{t^3+t^2+4\cdot t}{(t^2+4)^2}, t)$$

$$\frac{t+1}{t^2+4} - \frac{4}{(t^2+4)^2}$$

Rücktransformation mit dem $\mathcal{L}^{-1}_{\square}(\square)[\square]$ -Operator:

$$y=\mathcal{L}_{t}^{-1}\left(\frac{t^{3}+t^{2}+4\cdot t}{(t^{2}+4)^{2}}\right)[x]$$

$$y = \frac{x \cdot \cos(2 \cdot x)}{2} + \cos(2 \cdot x) + \frac{\sin(2 \cdot x)}{4}$$

Einzelschritte: (Korrespondenztabelle)

$$\mathcal{L}_t^{\scriptscriptstyle -1}\!\!\left(\!-\!\frac{4}{\left(t^2\!+\!4\right)^2}\right)\!\left[x\right]$$

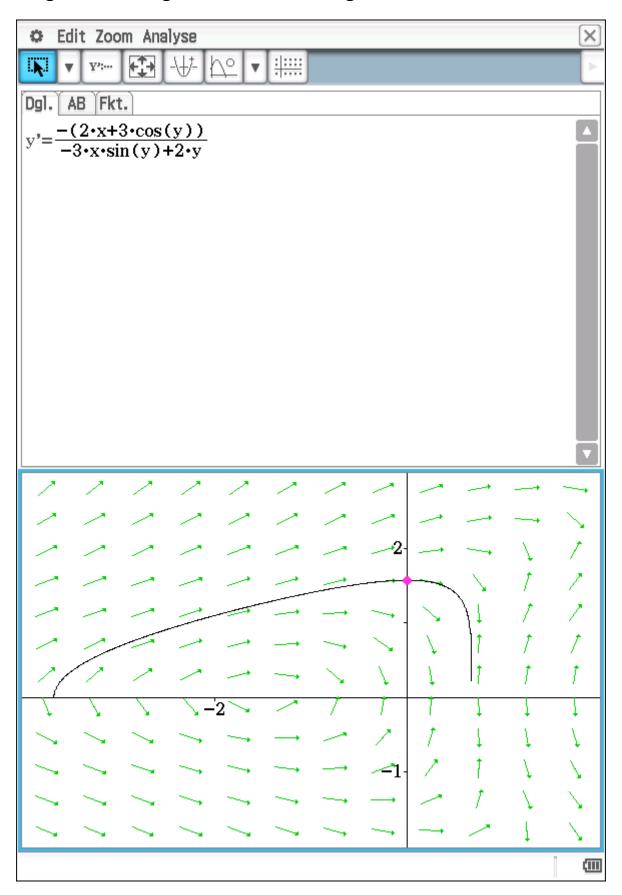
$$\frac{x \cdot \cos(2 \cdot x)}{2} - \frac{\sin(2 \cdot x)}{4}$$

$$\mathcal{L}_t^{\text{-}\text{1}}\!\left(\!\frac{t}{t^2\!+\!4}\right)\!\left[x\right]$$

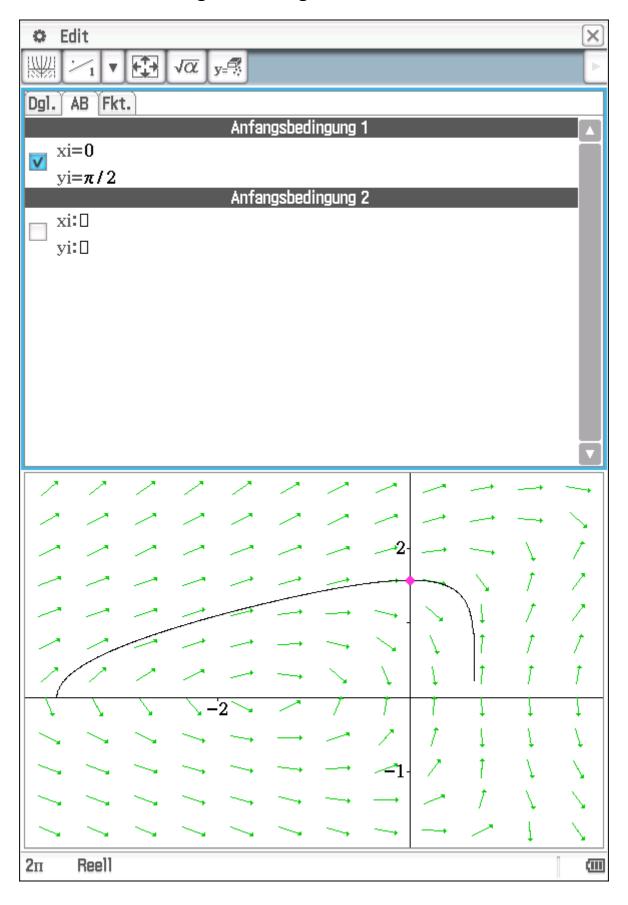
$$\mathcal{L}_t^{\text{-}\text{!`}}\!\!\left(\frac{1}{t^2\text{+}4}\right)\!\left[x\right]$$

$$\frac{\sin(2\cdot x)}{2}$$

Aufg. 6.1.8 Dgl-Grafik mit Richtungsfeld



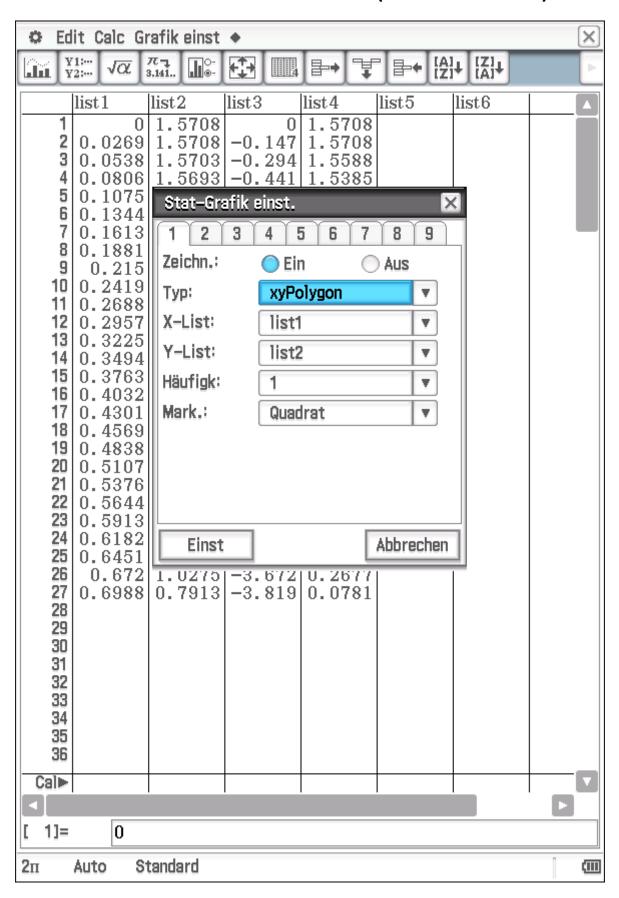
Grafische Darstellung der Lösung des AWP



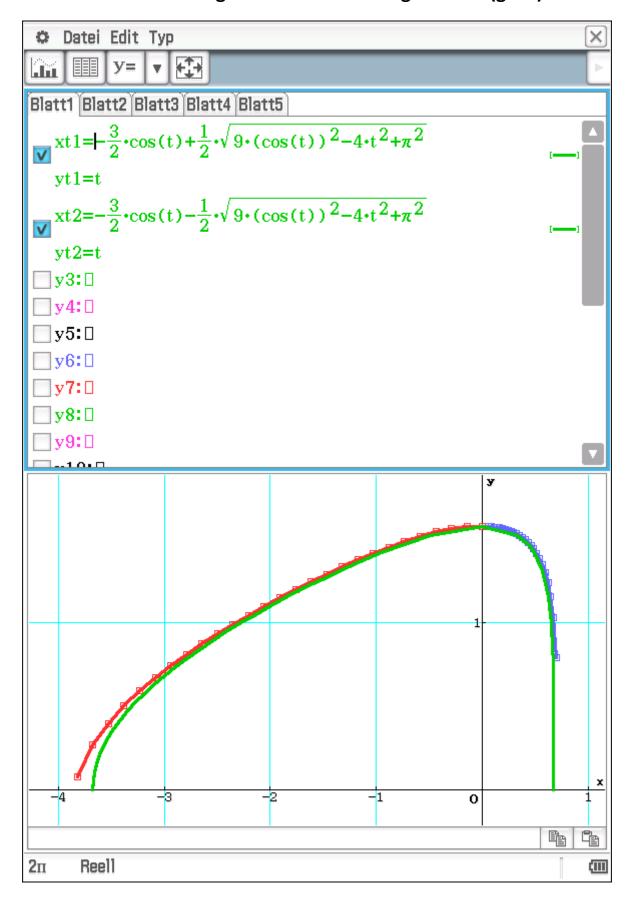
Euler-Verfahren – Tabellenkalkulation

$\overline{}$	Datei Edit	Grafik Cal						×
0.5 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	B A ∕∕	■ • 6	→	₽ Ţ	₽	* ₩ ▼		Ŀ
	A	В	С	D	E	F		\blacksquare
1	f(x,y)=	$(-(2\cdot x+3)$	3.cos(y)))/(2·y-3	·x·sin(y))		
2	x0=	0						
3	y0=	1.57080						
4	hr=	0.02688						
5	hl=	-0.1469						
6	k	xk-n.r.	yk		yk			
7	0	0	1.57080	0	1.57080			
8	1	0.02688	1.57080	-0.1469	1.57080			
9	2	0.05376	1.57032	-0.2938	1.55875			
10	3	0.08063	1.56934	-0.4406	1.53850			
11	4	0.10751	1.56780	-0.5875	1.51230			
12	5	0.13439	1.56566	-0.7344	1.48161			
13	6	0.16127	1.56286	-0.8813	1.44739			
14	7	0.18815	1.55934	-1.0281	1.41031			
15	8	0.21503	1.55502	-1.1750	1.37082		T '	
16	9	0.24190	1.54981	-1.3219	1.32925			
17	10	0.26878	1.54362	-1.4688	1.28578			
18	11	0.29566	1.53633	-1.6157	1.24055			
19	12	0.32254	1.52779	-1.7625	1.19361			
20	13	0.34942	1.51783	-1.9094	1.14493			
21				-2.0563				
22				-2.2032				
23	16	0.43005	1.47704	-2.3501	0.98751			
24	17	0.45693	1.45868	-2.4969	0.93056			
25	18	0.48381	1.43708	-2.6438	0.87079		†	
26				-2.7907			+	
27				-2.9376				
28				-3.0844			+	
29				-3.2313			+	
30				-3.3782			+	
31				-3.5251			+	V
	21	2101000		0.0201	5.00001			
=C7-	+(-\$B\$4•	(2•B7+3•	cos(C7)))/(2·C7-	-3•B 7•s in ((C7))	V	X
C8 1.5	70796327							(111

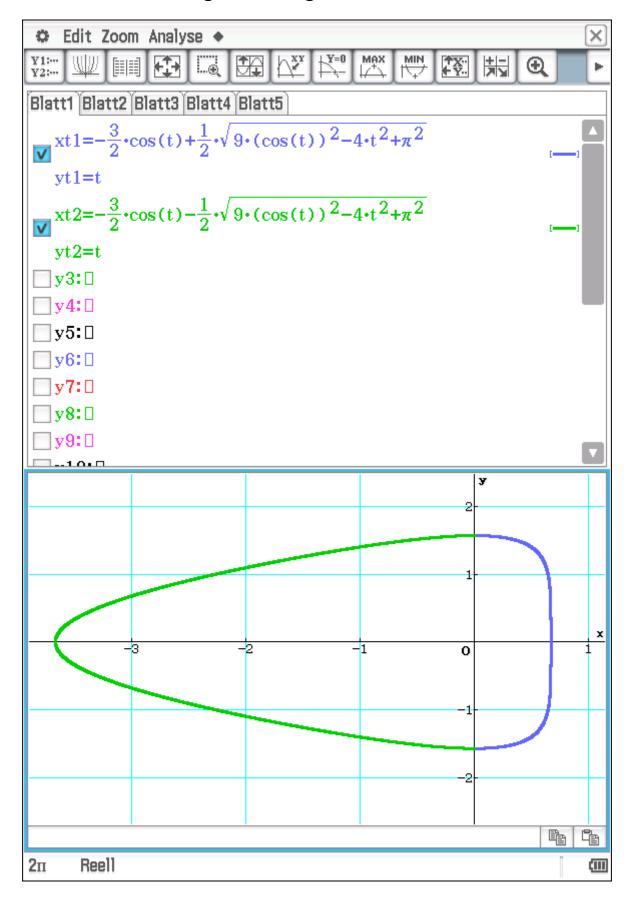
Übernahme der Tabellendaten als Listen (statistische Grafik)



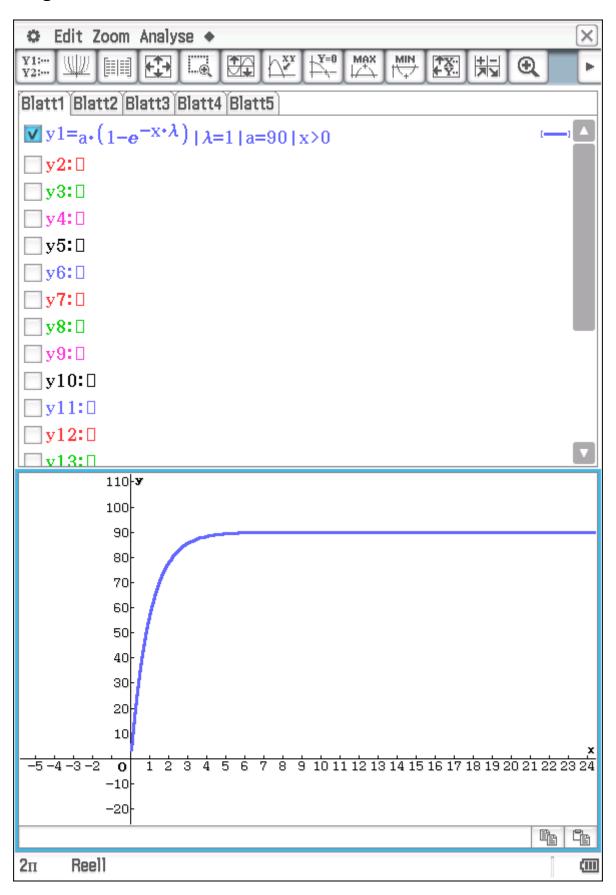
Eulerverfahren im Vergleich zur realen Integralkurve (grün)



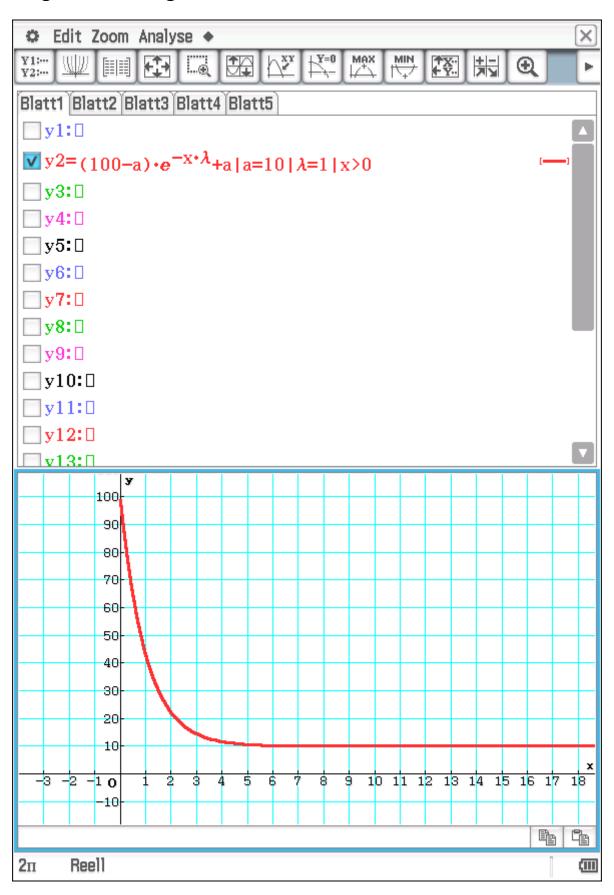
Parameterdarstellung der Lösung des AWP



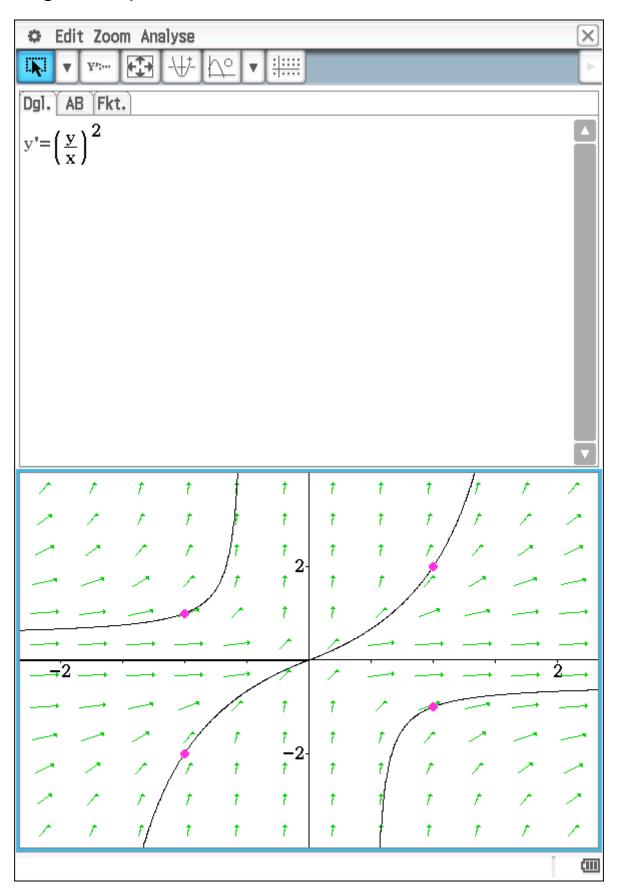
Aufg. 6.1.9 Lernkurve



Aufg. 6.1.9 Vergessenskurve



Aufg. 6.1.21a)



Lösungskurven überall monoton wachsend (y' > 0)

