Prof. Dr. L. Paditz, 15.02.2019

HTW Dresden,

paditz@htw-dresden.de

Lineare Regression mit Grafik

(y-Daten sind verrauschte sin-Daten)

lin. Modell: y=W∗x+b

später:

Weiterführend allg. sin-Modell mit verrauschten Daten:

y=a*sin(b*x+c)+d, (Paditz 13.03.2019)

Quelle für lin. Modell: s.S. 48-50

http://harmanani.github.io/classes/csc498r/

 $Notes/Lecture 16.\,pdf$

python3

```
# %% imports %matplotlib inline
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# %% Let's create some toy data
plt.ion()
n_{observations} = 100
fig, ax = plt.subplots(1, 1)
xs = np.linspace(-3, 3, n_observations)
ys = np.sin(xs) + np.random.uniform(-0.5, 0.5,
n_observations)
ax.scatter(xs, ys)
fig. show()
plt.draw()
# %% tf.placeholders for the input and output of the
network.
# Placeholders are variables which we need to fill in
when we
```

are ready to compute the graph.

X = tf.placeholder(tf.float32)

Y = tf.placeholder(tf.float32)

%% We will try to optimize min_(W,b) ||(X*w +

b) $-y||^2$

The `Variable()` constructor requires an initial value for the

variable,, which can be a `Tensor` of any type and shape. The

initial value defines the type and shape of the variable.

After construction, the type and shape of the variable are

fixed. The value can be changed using one of the assign methods.

W = tf.Variable(tf.random_normal([1]),

name='weight')

b = tf.Variable(tf.random_normal([1]), name='bias')

```
Y_{pred} = tf.add(tf.multiply(X, W), b)
```

%% Loss function will measure the distance between our observations

and predictions and average over them.

cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) /
(n_observations - 1)

- # %% Use gradient descent to optimize W, b
- # Performs a single step in the negative gradient

 $learning_rate = 0.01$

optimizer =

tf.train.GradientDescentOptimizer(learning_rate).minimi

%% We create a session to use the graph

 $n_{\text{epochs}} = 1000$

init = tf.global_variables_initializer()

with tf. Session() as sess:

```
# Here we tell tensorflow that we want to initialize
all
    # the variables in the graph so we can use them
    sess.run(init)
    print(xs)
    print(ys)
    # Fit all training data
    prev_training_cost = 0.0
    for epoch_i in range(n_epochs):
         for (x, y) in zip(xs, ys):
              sess.run(optimizer, feed_dict={X: x, Y:
y})
         training_cost = sess.run(cost, feed_dict={X:
xs, Y: ys)
         curr_W, curr_b = sess.run([W, b])
         print(curr_W, curr_b, training_cost)
         if epoch_i % 20 == 0:
              ax.plot(xs, Y_pred.eval(feed_dict={X:
```

xs}, session=sess), 'k', alpha=epoch_i / n_epochs)
fig.show()
plt.draw()

Allow the training to quit if we've reached a minimum

if np.abs(prev_training_cost - training_cost)
< 0.000001:</pre>

break

prev_training_cost = training_cost

fig. show()

Rechnerprotokoll:

parallels@parallels-Parallels-Virtual-Platform:~\$ python3

Python 3.6.7 (default, Oct 22 2018, 11:32:17)

[GCC 8.2.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

- >>> # %% imports %matplotlib inline
- ... import numpy as np
- >>> import tensorflow as tf
- >>> import matplotlib.pyplot as plt
- >>> # %% Let's create some toy data
- ... plt.ion()
- $\rightarrow \rightarrow n_{observations} = 100$
- $\Rightarrow\Rightarrow$ fig, ax = plt.subplots(1, 1)
- $\Rightarrow \Rightarrow xs = np.linspace(-3, 3, n_observations)$
- >>> ys = np. $\sin(xs)$ + np.random.uniform(-0.5,
- 0.5, n_observations)
- >>> ax.scatter(xs, ys)
- <matplotlib.collections.PathCollection object at</p>
- 0x7f560590bbe0>
- >>> fig.show()
- >>> plt.draw()
- >>> # %% tf.placeholders for the input and output of the network.

... # Placeholders are variables which we need to fill in when we

... # are ready to compute the graph.

... X = tf.placeholder(tf.float32)

>>> Y = tf.placeholder(tf.float32)

>>> # %% We will try to optimize min_(W,b) ||(X*w + b) - y||^2

... # The `Variable()` constructor requires an initial value for the

... # variable,, which can be a `Tensor` of any type and shape. The

... # initial value defines the type and shape of the variable.

... # After construction, the type and shape of the variable are

... # fixed. The value can be changed using one of the assign methods.

... W = tf.Variable(tf.random_normal([1]),

```
name='weight')
>>> b = tf.Variable(tf.random_normal([1]),
name='bias')
>>> Y_pred = tf.add(tf.multiply(X, W), b)
>>>
>>> # %% Loss function will measure the distance
between our observations
... # and predictions and average over them.
\dots cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) /
(n_{observations} - 1)
>>>
>>> # %% Use gradient descent to optimize W, b
... # Performs a single step in the negative gradient
\dots learning_rate = 0.01
>>> optimizer =
tf.train.GradientDescentOptimizer(learning_rate).minimi
>>>
```

>>> # %% We create a session to use the graph

```
... n_epochs=1000
>>> init = tf.global_variables_initializer()
>>> with tf. Session() as sess:
         # Here we tell tensorflow that we want to
initialize all
         # the variables in the graph so we can use
them
         sess.run(init)
         print(xs)
         print(ys)
         # Fit all training data
         prev_training_cost = 0.0
         for epoch_i in range(n_epochs):
              for (x, y) in zip(xs, ys):
                   sess.run(optimizer, feed_dict={X:
x, Y: y)
              training_cost = sess.run(cost,
feed_dict={X: xs, Y: ys})
```

```
curr_W, curr_b = sess.run([W, b])
              print(curr_W, curr_b, training_cost)
              if epoch_i \% 20 == 0:
                  ax.plot(xs,
Y_pred.eval(feed_dict={X: xs}, session=sess), 'k',
alpha=epoch_i / n_epochs)
                  fig. show()
                   plt.draw()
              # Allow the training to quit if we've
reached a minimum
              if np.abs(prev_training_cost -
training_cost) < 0.000001:
                   break
              prev_training_cost = training_cost
# 100 x-Daten
[-3.
               -2.93939394 - 2.87878788
-2.81818182 -2.75757576 -2.6969697
```

- -2.63636364 -2.57575758 -2.51515152
- -2.45454545 -2.39393939 -2.33333333
 - -2.27272727 -2.21212121 -2.15151515
- -2.09090909 -2.03030303 -1.96969697
 - -1.90909091 -1.84848485 -1.78787879
- -1.72727273 -1.666666667 -1.60606061
 - -1.54545455 -1.48484848 -1.42424242
- -1.36363636 -1.3030303 -1.24242424
 - -1.18181818 -1.12121212 -1.06060606 -1.
 - -0.93939394 0.87878788
 - -0.81818182 -0.75757576 -0.6969697
- -0.63636364 -0.57575758 -0.51515152
 - -0.45454545 0.39393939 0.33333333
- -0.27272727 -0.21212121 -0.15151515
 - -0.09090909 -0.03030303 0.03030303
- $0.09090909 \quad 0.15151515 \quad 0.21212121$
 - $0.27272727 \quad 0.33333333 \quad 0.39393939$
- 0.45454545 0.51515152 0.57575758

- 0.63636364 0.6969697 0.75757576
- 0.81818182 0.87878788 0.93939394
 - 1. 1.06060606 1.12121212
- 1.18181818 1.24242424 1.3030303
 - 1.36363636 1.42424242 1.48484848
- 1.54545455 1.60606061 1.66666667
 - 1.72727273 1.78787879 1.84848485
- 1.90909091 1.96969697 2.03030303
 - 2.09090909 2.15151515 2.21212121
- 2.27272727 2.33333333 2.39393939
 - 2.45454545 2.51515152 2.57575758
- 2.63636364 2.6969697 2.75757576
 - 2.81818182 2.87878788 2.93939394 3.

]

- # 100 y-Daten:
- [0.20291621 0.22118012 0.62833878]
- 0.01444744 0.27653231 0.81966122
 - -0.59394983 -0.68889316 -0.89094116

- -0.64222339 -0.36528585 -0.31661621
 - -0.37948344 -0.33735615 -1.06720325
- -1.21275391 -0.71440054 -0.89515028
 - -0.56801334 -0.98468848 -0.54954994
- -1.0945503 -1.33175895 -1.34249212
 - -0.65011852 -0.78674601 -1.35303092
- -1.19645055 -1.1630676 -1.14722283
 - -1.0047393 -1.1928673 -0.88925636
- -0.95923765 -0.46293165 -1.2023979
 - -0.62926533 -0.19748193 -1.05230669
- -0.74460138 0.8929727 0.08115272
 - -0.24367908 -0.39987265 0.06714758
- -0.05671209 -0.27908047 -0.63617708
 - -0.30698586 -0.21597079 -0.03565833
- -0.27975359 0.24541802 0.45953916
 - $0.09202181 \quad 0.45763097 \quad 0.57728143$
- 0.06150595 0.40199538 0.66282468
 - 0.16705133 1.06981763 0.31727183

- - 0.73689616 0.68987514 0.48259013
- 1.08477711 0.84286125 1.20258011
 - 0.55556689 1.39794857 1.03707338
- 0.8518561 1.0564094 0.56761776
 - 0.53057936 0.55085757 1.28483505
- 1.35616653 0.85892314 0.53569456
 - 0.3758622 1.02227012 0.80742031
- $0.72057286 \quad 1.15398355 \quad 0.71426198$
 - 0.36634298 1.02687661 0.92441443
- 0.51944523 0.91051877 0.59040157
 - 0.32209332 0.01796203 0.53824307
- 0.02899414]
- # Iteration mit Plot aller 20 Schritte
- [-1.4935356] [-0.13225833] 10.572385
- [<matplotlib.lines.Line2D object at 0x7f904511cb70>]
- [-1.3838066] [-0.13055438] 9.36893
- [-1.2806613] [-0.12886626] 8.30555

- [-1.1837045] [-0.12719482] 7.3659387
- [-1.0925653] [-0.12554075] 6.535692
- [-1.0068941] [-0.12390465] 5.802076
- [-0.9263632] [-0.12228709] 5.153846
- [-0.8506643] [-0.12068851] 4.581062
- [-0.779507] [-0.11910937] 4.074939
- [-0.71261907] [-0.11755012] 3.6277204
- [-0.6497446] [-0.11601089] 3.2325506
- [-0.5906425] [-0.11449206] 2.88337
- [-0.53508717] [-0.11299378] 2.5748284
- [-0.48286477] [-0.11151634] 2.30219
- [-0.43377584] [-0.11005974] 2.0612786
- [-0.3876326] [-0.10862413] 1.848402
- [-0.3442579] [-0.1072096] 1.6602951
- [-0.30348572] [-0.10581618] 1.4940751
- [-0.26516014] [-0.10444393] 1.3471955
- [-0.22913408] [-0.10309275] 1.2174037
- $\lceil -0.19526978 \rceil$ $\lceil -0.10176254 \rceil$ 1.1027118

- [<matplotlib.lines.Line2D object at 0x7f904513da58>]
- [-0.1634373] [-0.10045338] 1.0013614
- [-0.13351497] [-0.09916513] 0.9118
- [-0.10538808] [-0.09789774] 0.83265585
- [-0.07894888] [-0.09665104] 0.7627159
- [-0.05409618] [-0.09542488] 0.7009094
- [-0.03073477] [-0.09421916] 0.64628947
- [-0.00877515] [-0.09303365] 0.5980197
- [0.01186677] [-0.09186824] 0.55536115
- [0.03127005] [-0.09072271] 0.5176608
- $[0.049509021 \ [-0.08959687] \ 0.48434162$
- [0.06665351] [-0.08849053] 0.4548939
- [0.08276922] [-0.08740351] 0.42886704
- [0.09791785] [-0.08633552] 0.40586302
- [0.11215741] [-0.08528641] 0.38553023
- [0.12554248] [-0.08425587] 0.36755776
- [0.13812433] [-0.0832438] 0.35167104
- $\lceil 0.149951121 \rceil -0.08224991 0.33762753$

- [0.16106822] [-0.08127388] 0.32521266
- [0.17151816] [-0.08031559] 0.31423715
- [0.18134099] [-0.07937472] 0.3045336
- [<matplotlib.lines.Line2D object at 0x7f90450b9048>]
- [0.19057424] [-0.07845104] 0.2959541
- [0.1992534] [-0.07754428] 0.28836796
- [0.20741177] [-0.07665425] 0.28165957
- [0.21508048] [-0.07578067] 0.275727
- [0.22228895] [-0.07492331] 0.2704801
- [0.22906479] [-0.0740819] 0.26583925
- [0.23543398] [-0.07325623] 0.26173386
- [0.24142094] [-0.072446] 0.2581019
- [0.24704853] [-0.07165099] 0.25488836
- [0.25233835] [-0.07087094] 0.25204465
- [0.2573106] [-0.07010563] 0.24952786
- [0.2619844] [-0.06935482] 0.24730006
- [0.26637772] [-0.06861825] 0.24532771
- [0.27050734] [-0.0678957] 0.24358118

- [0.27438903] [-0.06718691] 0.24203433
- [0.27803776] [-0.06649162] 0.24066404
- [0.2814674] [-0.06580967] 0.23944986
- [0.28469115] [-0.06514079] 0.23837371
- [0.28772154] [-0.06448473] 0.2374196
- [0.29056993] [-0.06384134] 0.23657347
- [<matplotlib.lines.Line2D object at 0x7f90450bb128>]
- [0.2932472] [-0.06321033] 0.23582289
- [0.29576373] [-0.06259151] 0.23515676
- [0.2981294] [-0.06198462] 0.23456533
- $[0.3003531 \ [-0.061389481 \ 0.23404005$
- [0.3024431] [-0.06080589] 0.23357327
- [0.30440748] [-0.06023363] 0.23315836
- [0.30625394] [-0.05967252] 0.23278928
- [0.30798975] [-0.05912232] 0.23246075
- [0.30962116] [-0.05858284] 0.23216821
- [0.3111545] [-0.0580539] 0.2319075
- [0.3125959] [-0.05753528] 0.23167498

- [0.31395072] [-0.05702679] 0.23146749
- [0.31522417] [-0.05652824] 0.23128211
- [0.3164212] [-0.05603946] 0.23111638
- [0.31754622] [-0.05556026] 0.2309681
- [0.31860372] [-0.05509046] 0.23083527
- [0.31959772] [-0.05462988] 0.23071612
- [0.32053193] [-0.05417835] 0.23060918
- [0.32141] [-0.0537357] 0.23051307
- [0.3222354] [-0.05330175] 0.23042655
- [<matplotlib.lines.Line2D object at 0x7f90450bb470>]
- [0.32301128] [-0.05287637] 0.2303486
- [0.3237405] [-0.05245934] 0.23027825
- [0.32442594] [-0.05205055] 0.23021467
- [0.32507002] [-0.05164982] 0.23015712
- [0.32567558] [-0.05125701] 0.23010492
- [0.32624465] [-0.05087192] 0.23005757
- [0.3267793] [-0.05049448] 0.23001446
- [0.32728192] [-0.05012447] 0.22997521

- [0.3277544] [-0.04976181] 0.22993937
- [0.3281983] [-0.04940633] 0.2299066
- [0.32861575] [-0.04905788] 0.22987656
- [0.3290082] [-0.04871632] 0.22984898
- [0.32937708] [-0.04838153] 0.22982359
- [0.32972354] [-0.04805339] 0.2298002
- [0.33004913] [-0.04773178] 0.22977862
- [0.33035526] [-0.04741653] 0.22975864
- [0.33064303] [-0.04710753] 0.22974013
- [0.33091354] [-0.04680462] 0.22972289
- $[0.33116761 \quad [-0.046507771 \quad 0.22970688$
- [0.33140635] [-0.04621683] 0.22969195
- [<matplotlib.lines.Line2D object at 0x7f90450c0198>]
- [0.3316306] [-0.04593166] 0.22967803
- [0.33184144] [-0.04565217] 0.22966497
- [0.3320396] [-0.04537822] 0.22965272
- [0.3322259] [-0.04510972] 0.22964121
- [0.33240113] [-0.04484659] 0.2296304

- [0.33256567] [-0.04458867] 0.22962023
- [0.33272025] [-0.04433587] 0.22961059
- [0.33286542] [-0.04408811] 0.2296015
- [0.33300197] [-0.04384529] 0.22959289
- [0.33313015] [-0.04360731] 0.22958477
- [0.3332506] [-0.04337407] 0.22957702
- [0.33336368] [-0.04314548] 0.22956967
- [0.33347008] [-0.04292142] 0.22956267
- [0.33357018] [-0.04270184] 0.229556
- [0.33366412] [-0.04248665] 0.22954965
- [0.33375254] [-0.04227573] 0.2295436
- [0.33383548] [-0.04206905] 0.22953781
- [0.3339135] [-0.04186647] 0.22953229
- [0.33398664] [-0.04166792] 0.229527
- [0.3340553] [-0.04147331] 0.22952192
- [<matplotlib.lines.Line2D object at 0x7f90450c31d0>]
- [0.3341199] [-0.04128261] 0.22951706
- [0.33418056] [-0.04109569] 0.2295124

- [0.33423772] [-0.04091252] 0.22950795
- [0.33429137] [-0.040733] 0.22950365
- [0.3343417] [-0.04055704] 0.22949953
- [0.334389] [-0.04038462] 0.22949556
- [0.33443338] [-0.04021563] 0.22949179
- [0.3344751] [-0.04005002] 0.22948812
- [0.33451432] [-0.03988773] 0.22948457
- [0.334551] [-0.03972868] 0.2294812
- [0.3345856] [-0.03957277] 0.22947793
- [0.3346181] [-0.03941998] 0.22947481
- [0.33464855] [-0.03927026] 0.22947179
- [0.3346773] [-0.03912352] 0.22946885
- [0.33470413] [-0.03897971] 0.22946607
- [0.3347294] [-0.03883879] 0.22946331
- [0.33475336] [-0.03870068] 0.2294607
- [0.3347759] [-0.03856531] 0.22945818
- [0.33479688] [-0.03843268] 0.22945575
- [0.33481655] [-0.03830269] 0.22945338

- [<matplotlib.lines.Line2D object at 0x7f90450c5198>]
- [0.3348351] [-0.03817529] 0.22945113
- [0.33485246] [-0.03805044] 0.22944891
- [0.3348689] [-0.03792807] 0.2294468
- [0.33488408] [-0.03780816] 0.22944477
- [0.3348983] [-0.03769065] 0.22944279
- [0.33491185] [-0.03757549] 0.2294409
- [0.33492458] [-0.03746263] 0.22943905
- [0.33493653] [-0.03735201] 0.22943726
- [0.3349477] [-0.0372436] 0.22943555
- [0.3349582] [-0.03713737] [0.22943386]
- [0.33496794] [-0.03703327] 0.22943226
- [0.33497703] [-0.03693125] 0.22943069
- [0.3349856] [-0.03683123] 0.2294292
- [0.33499357] [-0.03673325] 0.22942773
- [0.33500117] [-0.03663723] 0.22942631
- [0.3350081] [-0.03654309] 0.22942497
- [0.33501482] [-0.03645087] 0.22942366

- [0.33502105] [-0.03636049] 0.22942236
- [0.33502698] [-0.03627193] 0.22942114
- [0.3350325] [-0.03618513] 0.22941992

[<matplotlib.lines.Line2D object at 0x7f90450c5550>]

- [0.33503768] [-0.03610006] 0.22941877
- [0.33504245] [-0.03601667] 0.22941762
- [0.3350471] [-0.03593496] 0.22941655
- [0.33505127] [-0.03585487] 0.2294155
- [0.33505526] [-0.0357764] 0.2294145
- [0.33505905] [-0.03569948] 0.22941352
- >>> fig. show()

mit ClassPad:

$$xs = seq(x, x, -3, 3, \frac{6}{99})$$

{-3,-2.939393939,-2.878787879,-2.818181818,-▶ approx(ans)

 $\{-3, -2, 939393939, -2, 878787879, -2, 818181818, -\$ ys:= $\sin(xs)$ +randList(100)-0.5

 $\{0.01382481814, -0.6697871794, -0.4807604983, - \mathbb{N}\}$

approx(ans)

 $\{0.01382481814, -0.6697871794, -0.4807604983, - \triangleright$

STAT-Menü

y1(x)

 $0.1221540342 \cdot \sin(3.591295599 \cdot x - 0.5414384286) - 0$ sum((y1(xs)-ys)^2)/99

0.6395667985

Daten von Tensorflow.

yss:={-0.18295909, 0.11708618, -0.40319602, ► {-0.18295909, 0.11708618, -0.40319602, -0.79582▶

LinearReg xs, yss, 1, y2

done

DispStat

done

Lineare Regression

y=a*x+b

a = 0.3555142

b = -9.113E-3

r = 0.7722933

 $r^2 = 0.5964369$

MSe = 0.2670806

cost = 0.26442605

0.26442605*99/98

0.267124275

stop

Anlage:

Bild mit verrauschten Daten bei linearer

Regression

Download für dieses Dokument:

www.informatik.htw-dresden.de/ ~paditz/Tensorflow-Ue13.pdf

Zusatz:

sin-Regression:

$$xs = seq(x, x, -3, 3, \frac{6}{99})$$

{-3, -2.939393939, -2.878787879, -2.818181818, -▶

ys:=sin(xs)+randList(100)-0.5

 $\{-0.2310886776, 0.2671283261, -0.5656227723, 0. \triangleright$

LinearReg xs, ys, 1, y1, On

done

y1(x)

0.335014124·x+1.168330812E-3

MSe

0.2823086501

 $sum((ys-y1(xs))^2)/98$

0.2823086501

sum((residual)^2)/98

0.2823086501

SinReg xs, ys, y2, On

done

y2(x) $0.09696177937 \cdot \sin(6.551170793 \cdot x + 2.375239149) - 1$ DispStat done Sinus-Reg. mit ClassPad $y=a\cdot\sin(b\cdot x+c)+d$ aCoef 0.09696177937 bCoef 6.551170793 cCoef 2.375239149 dCoef -1.705322392e-3MSe 0.6280404286 $sum((ys-y2(xs))^2)/98$ 0.6280404286 sum((residual)^2)/98 0.6280404286 unbrauchbares Ergebnis! stop

Levenberg-Marquardt-Verfahren:

STAT-Menü

(als ClassPad-Programm im library-Ordner)

```
DelVar a, b, c, d
                                                                done
SinDReg(xs, ys, 1., 1., 0, -.5, 1, 10)
                                                                done
vecab
                                                0.9845803391
                                                0.01661479831
vecs
                                             -2.964031247E-16
1.859443018E-17
MSerr
                                                    0.0684881385
DelVar a, b, c, d
                                                                done
\{a=\text{vecab}[1,1], b=\text{vecab}[2,1], c=\text{vecab}[3,1], d=\text{vecab}\}
      {a=0.9845803391, b=0.9775726083, c=0.016614798
Define y3(x)=a\cdot\sin(b\cdot x+c)+d|\{a=0.9932587591,b=1.
                                                                done
y3(x)
      0.9932587591 \cdot \sin(1.013914946 \cdot x + 0.08034471995) + \triangleright
Define y3(x)=0.9932587591 \cdot \sin(1.013914946 \cdot x + 0.0)
                                                                done
sum((ys-y3(xs))^2)/98
                                                   0.07325179357
```

sin-Regression mit Tensorflow:

```
python3
# %% imports %matplotlib inline
import numpy as np
import tensorflow as tf
import matplotlib. pyplot as plt
# %% Let's create some toy data
plt.ion()
n_{observations} = 100
fig. ax = plt.subplots(1, 1)
xs = np.linspace(-3, 3, n_observations)
ys = np.\sin(xs) + np.random.uniform(-0.5, 0.5,
n observations)
ax.scatter(xs, ys)
fig. show()
plt.draw()
# %% tf.placeholders for the input and output of the
network.
# Placeholders are variables which we need to fill in
when we
# are ready to compute the graph.
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)
# %% We will try to optimize min_(W,b)
||(a*sin(X*b + c)+d - y||^2
# The `Variable()` constructor requires an initial value
```

for the

variable,, which can be a 'Tensor' of any type and shape. The

initial value defines the type and shape of the variable.

After construction, the type and shape of the variable are

fixed. The value can be changed using one of the assign methods.

```
a = tf.Variable(tf.random_normal([1]),
name='weight_a')
b = tf.Variable(tf.random_normal([1]),
name='weight_b')
c = tf.Variable(tf.random_normal([1]),
name='bias_c')
d = tf.Variable(tf.random_normal([1]),
name='bias_d')
```

%% Loss function will measure the distance between our observations

and predictions and average over them.

```
cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) /
(n observations - 2)
```

```
# %% Use gradient descent to optimize a, b, c, d
# Performs a single step in the negative gradient
learning_rate = 0.01
optimizer =
tf.train.GradientDescentOptimizer(learning_rate).minimi
# %% We create a session to use the graph
n_{\text{epochs}} = 1000
init = tf.global_variables_initializer()
with tf. Session() as sess:
     # Here we tell tensorflow that we want to initialize
all
     # the variables in the graph so we can use them
     sess.run(init)
     print(sess.run([a,b,c,d]))
     print(xs)
     print(ys)
     # Fit all training data
     prev_training_cost = 0.0
     for epoch i in range (n epochs):
          for (x, y) in zip(xs, ys):
               sess.run(optimizer, feed_dict={X: x, Y:
y})
          training_cost = sess.run(cost, feed_dict={X:
xs, Y: ys)
          curr_a, curr_b, curr_c, curr_d =
sess. run([a, b, c, d])
```

```
print(curr_a, curr_b, curr_c, curr_d,
training_cost)
  if epoch i % 100 == 0:
```

ax.plot(xs, Y_pred.eval(feed_dict={X:

xs}, session=sess), 'k', alpha=epoch_i / n_epochs)

fig. show()

plt.draw()

Allow the training to quit if we've reached a minimum

if np.abs(prev_training_cost - training_cost)
< 0.000001:</pre>

break

prev_training_cost = training_cost

fig. show()

Rechnerprotokoll:

parallels@parallels-Parallels-Virtual-Platform:~\$ python3 Python 3.6.7 (default, Oct 22 2018, 11:32:17)

[GCC 8.2.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> # %% imports %matplotlib inline

. . .

>>> import numpy as np

>>> import tensorflow as tf

>>> import matplotlib.pyplot as plt

>>> # %% Let's create some toy data

```
. . .
```

- >>> plt.ion()
- $\rightarrow \rightarrow n_{observations} = 100$
- $\Rightarrow \Rightarrow$ fig. ax = plt.subplots(1, 1)
- $\Rightarrow \Rightarrow xs = np.linspace(-3, 3, n_observations)$
- $\Rightarrow \Rightarrow$ ys = np.sin(xs) + np.random.uniform(-0.5,
- 0.5, n_observations)
- >>> ax.scatter(xs, ys)

<matplotlib.collections.PathCollection object at</p>

0x7feff311ebe0>

- >>> fig. show()
- >>> plt.draw()
- >>> # %% tf.placeholders for the input and output of the network.
- ... # Placeholders are variables which we need to fill in when we
- ... # are ready to compute the graph.

. . .

- >>> X = tf.placeholder(tf.float32)
- >>> Y = tf.placeholder(tf.float32)
- >>> # %% We will try to optimize min_(W,b)
- $||(a*sin(X*b + c)+d y||^2$
- ... # The `Variable()` constructor requires an initial value for the
- ... # variable,, which can be a `Tensor` of any type and shape. The
- ... # initial value defines the type and shape of the variable.
- ... # After construction, the type and shape of the

```
... # fixed. The value can be changed using one of
the assign methods.
>>> a = tf.Variable(tf.random_normal([1]),
name='weight_a')
>>> b = tf. Variable(tf.random_normal([1]),
name='weight_b')
>>> c = tf. Variable(tf.random_normal([1]),
name='bias c')
>>> d = tf.Variable(tf.random_normal([1]),
name='bias d')
>>> Y_pred = tf.add(tf.sin(tf.add(tf.multiply(X,
b),c)), d)
>>>
>>> # %% Loss function will measure the distance
between our observations
... # and predictions and average over them.
. . .
>>> cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) /
(n_{observations} - 2)
>>>
>>> # %% Use gradient descent to optimize a, b, c, d
... # Performs a single step in the negative gradient
. . .
\Rightarrow learning_rate = 0.01
>>> optimizer =
tf.train.GradientDescentOptimizer(learning_rate).minimi
>>>
```

variable are

```
>>> # %% We create a session to use the graph
>>>  n epochs=1000
>>> init = tf.global_variables_initializer()
>>> with tf. Session() as sess:
          # Here we tell tensorflow that we want to
initialize all
         # the variables in the graph so we can use
them
         sess.run(init)
         print(xs)
         print (ys)
         # Fit all training data
         prev_training_cost = 0.0
         for epoch i in range (n epochs):
               for (x, y) in zip(xs, ys):
                    sess.run(optimizer, feed_dict={X:
x, Y: y)
               training_cost = sess.run(cost,
feed_dict=\{X: xs, Y: ys\})
               curr_a, curr_b, curr_c, curr_d =
. . .
sess. run([a,b,c,d])
               print(curr_a, curr_b, curr_c, curr_d,
training_cost)
               if epoch_i \% 20 == 0:
                    ax.plot(xs.
Y_pred.eval(feed_dict={X: xs}, session=sess), 'k',
alpha=epoch_i / n_epochs)
                    fig. show()
. . .
```

```
plt.draw()
            # Allow the training to quit if we've
reached a minimum
            if np.abs(prev_training_cost -
training cost) \langle 0.000001:
                break
            prev_training_cost = training_cost
            -2.93939394 -2.87878788
ſ-3.
-2.81818182 -2.75757576 -2.6969697
-2.63636364 -2.57575758 -2.51515152
-2.45454545 -2.39393939 -2.33333333
 -2.27272727 -2.21212121 -2.15151515
-2.09090909 -2.03030303 -1.96969697
 -1.90909091 -1.84848485 -1.78787879
-1.72727273 -1.666666667 -1.60606061
-1.54545455 -1.48484848 -1.42424242
-1.36363636 -1.3030303 -1.24242424
 -1.18181818 -1.12121212 -1.06060606 -1.
   -0.93939394 - 0.87878788
 -0.81818182 -0.75757576 -0.6969697
-0.63636364 -0.57575758 -0.51515152
 -0.45454545 - 0.39393939 - 0.333333333
-0.27272727 -0.21212121 -0.15151515
 -0.09090909 -0.03030303 0.03030303
0.09090909 0.15151515 0.21212121
  0.27272727 0.333333333 0.39393939
0.45454545 0.51515152 0.57575758
  0.63636364 0.6969697 0.75757576
```

- $0.81818182 \quad 0.87878788 \quad 0.93939394$
 - 1. 1.06060606 1.12121212
- 1.18181818 1.24242424 1.3030303
 - 1.36363636 1.42424242 1.48484848
- 1.54545455 1.60606061 1.66666667
 - 1.72727273 1.78787879 1.84848485
- 1.90909091 1.96969697 2.03030303
 - 2.09090909 2.15151515 2.21212121
- 2.27272727 2.33333333 2.39393939
 - 2.45454545 2.51515152 2.57575758
- 2.63636364 2.6969697 2.75757576
- 2.81818182 2.87878788 2.93939394 3.
 -]
- $[-0.63384361 0.36607486 \ 0.0350044$
- -0.45321797 -0.03325758 -0.83480875
 - -0.17922524 -0.97337148 -0.20085492
- -0.87569599 -1.08640322 -1.09640202
 - -0.7789137 -0.71123747 -1.0860933
- -0.69226497 -0.77965481 -0.97976277
 - -0.60846786 -0.94568706 -0.89393624
- -0.97186363 -0.57957417 -0.71514532
 - -1.24489263 -0.89386646 -1.27216058
- -1.0654602 -1.36567641 -1.0929979
 - -1.09688741 -0.97754024 -1.17212534
- -0.93366606 -0.85698759 -0.70966972
 - -0.72223662 -0.97807535 -0.41484859
- -0.54773967 -0.17252735 -0.8861725
- -0.66196759 -0.54526795 -0.08960642
- -0.72607013 -0.69690249 -0.36821527

- -0.08131653 0.00825096 -0.43569732
- -0.24669398 0.2481128 0.02082426
 - -0.06780346 0.07742522 0.48423279
- 0.61862695 0.53270218 0.2127406
 - 0.72054377 0.30615222 0.76446249
- 0.86144103 1.10519689 0.61675945
 - 0.76929073 0.71768204 1.04815753
- 1.01594407 0.46943198 0.83947483
 - 0.95615742 0.96786794 1.24216731
- 0.72993708 0.61533662 1.14163974
 - 0.68052709 0.5800364 1.37301941
- 0.9004874 1.23238062 1.02134569
 - 1.13317556 0.4508377 0.71626227
- 0.36799607 0.50777854 0.55678726
 - 0.9658721 0.33184332 0.90190796
- 0.480088 0.75542073 0.84187995
- -0.15390561 0.68946099 -0.20612243
- -0.032713481
- $\lceil 0.98536921 \rceil \lceil 2.0754191 \rceil \lceil -1.11376521$
- [-1.1549263] 2.3176746

[<matplotlib.lines.Line2D object at 0x7fefef8567f0>]

. . .

[<matplotlib.lines.Line2D object at 0x7fefec841b00>]

- [0.9853692] [0.9874731] [-0.0686608]
- [-0.05719525] 0.07072975
- [0.9853692] [0.9874767] [-0.06854647]
- [-0.05720551] 0.07072843
- [0.9853692] [0.9874806] [-0.06843322]
- $[-0.057215681 \ 0.070727125$

- [0.9853692] [0.9874841] [-0.06832103]
- [-0.05722577] 0.070725866
- [0.9853692] [0.9874876] [-0.06821001]
- [-0.05723577] 0.07072462
- [0.9853692] [0.9874913] [-0.06809995]
- [-0.05724567] 0.07072339
- [0.9853692] [0.98749477] [-0.067991]
- [-0.0572555] 0.07072219
- [0.9853692] [0.987498] [-0.06788305]
- [-0.05726525] 0.070721015
- [0.9853692] [0.9875014] [-0.06777614]
- [-0.0572749] 0.07071987
- [0.9853692] [0.9875046] [-0.06767029]
- $[-0.057284481 \ 0.07071873]$
- [0.9853692] [0.98750776] [-0.06756542]
- [-0.05729401] 0.07071762
- [0.9853692] [0.9875108] [-0.06746153]
- [-0.05730342] 0.07071652
- [0.9853692] [0.987514] [-0.06735864]
- [-0.05731278] 0.07071546
- [0.9853692] [0.98751736] [-0.06725676]
- [-0.05732203] 0.07071441
- [0.9853692] [0.98752075] [-0.06715582]
- $[-0.057331191 \ 0.070713386$
- [0.9853692] [0.98752385] [-0.06705587]
- [-0.05734029] 0.07071238
- [0.9853692] [0.987527] [-0.06695688]
- [-0.05734929] 0.07071139
- >>> fig. show()

>>>

LM-Verfahren:

{a=0.9932587591,b=1.013914946,c=0.0803447199{

MSerr = 0.0684881385

Tensorflow:

[a=0.9853692] [b=0.987527] [c=-0.06695688]

[d=-0.05734929]

cost = 0.07071139

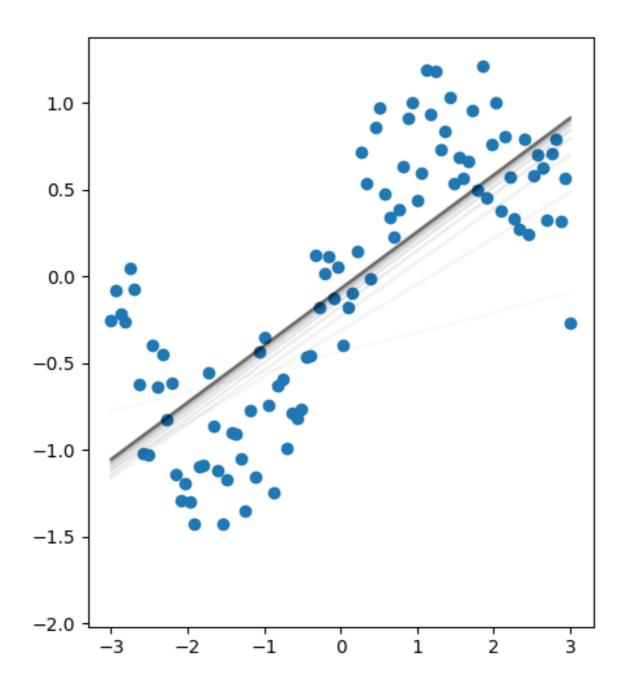
Download für dieses Dokument:

www.informatik.htw-dresden.de/

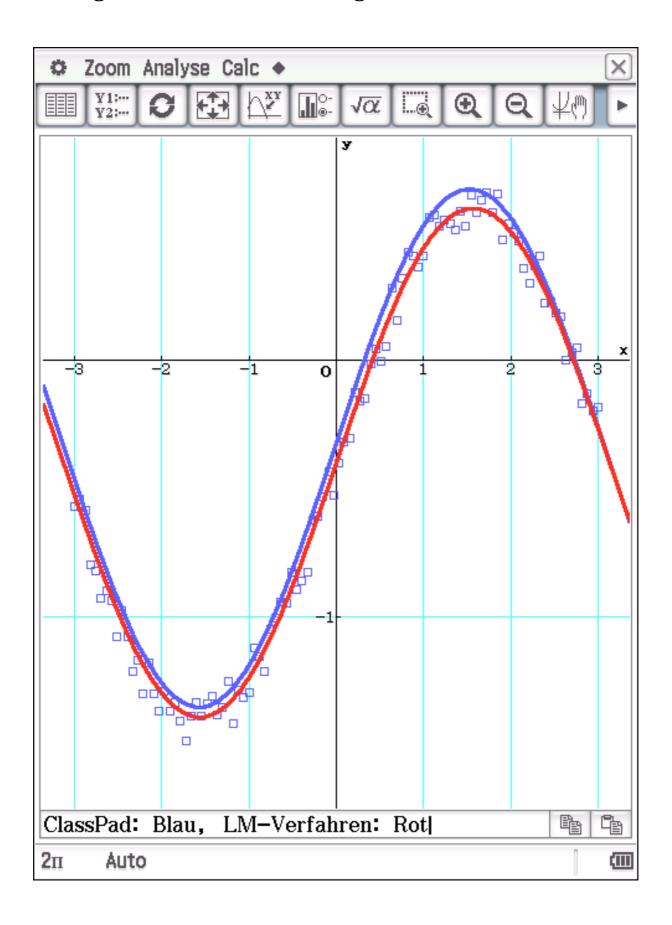
~paditz/Tensorflow-Ue15.pdf

Lineare Regression mit Tensorflow:

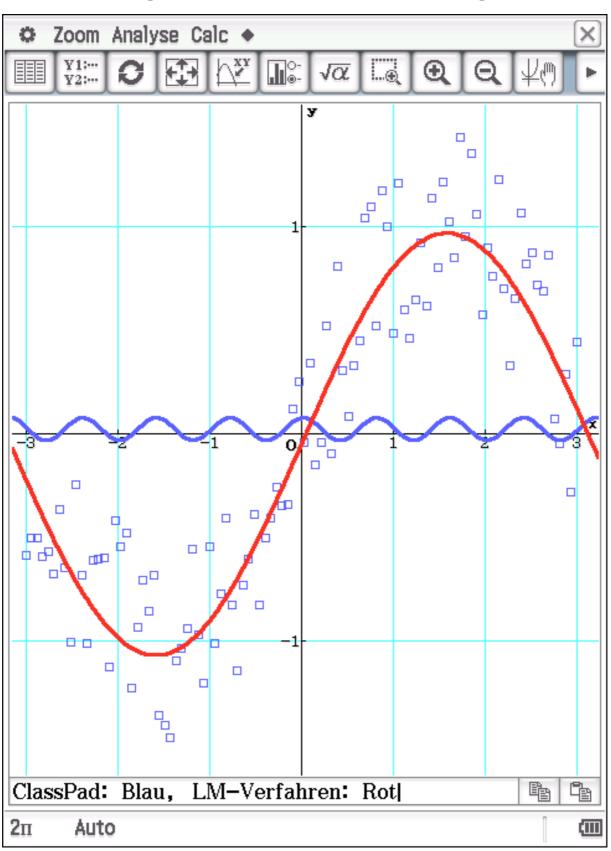
Verrauschte sin-Werte:



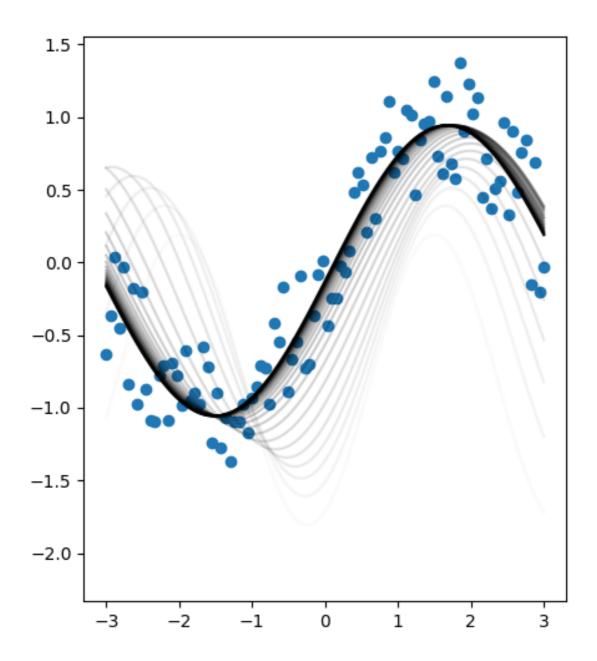
Sin-Regression: schwache Störung der sin-Werte



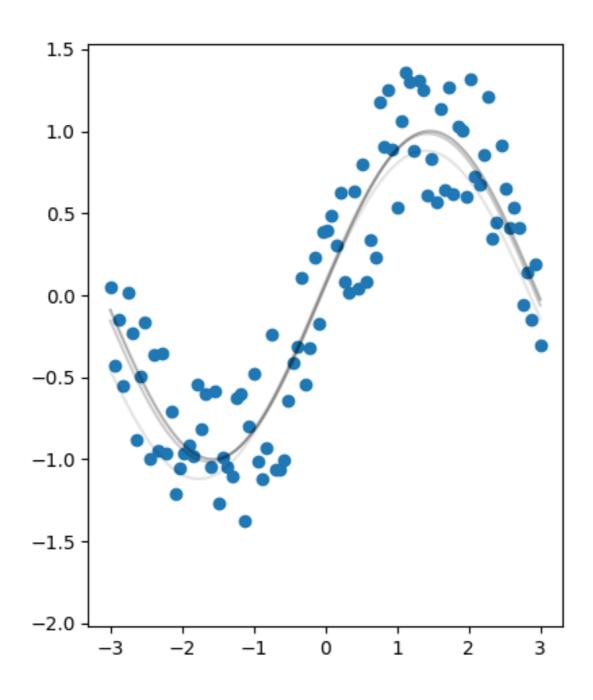
Sin-Regression: starke Störung der sin-Werte, blaue Kurve: ClassPad versagt hier und liefert ein sinnloses Ergebnis!



mit Tensorflow:



mit Tensorflow: erneute Simulation mit anders gestörten Daten



mit Tensorflow: erneute Simulation mit anders gestörten Daten, Verfahren konvergiert nicht wie gewünscht

