Using the ClassPad300Plus in Analysis to Solve a System of Linear Differential Equations

Ludwig Paditz, University of Applied Sciences Dresden (FH), Germany

University of Applied Sciences Dresden (FH), Germany

Abstract:

- In real life situations quantities and their rate of change depend on more than one variable. For example, the rabbit population, though it may be represented by a single number, depends on the size of predator populations and the availability of food. In order to represent and study such complicated problems we need to use more than one dependent variable and more than one equation. Systems of differential equations are the models to use.

- The nonlinear systems are very hard to solve explicitly, but qualitative and numerical techniques may help us to get some information on the behaviour of the solutions.
- Let us consider the ClassPad300Plus (with the new operating system OS 03.02) and discuss on some new exercises in analysis, e.g. solving a linear system of differential equations.
- We know several ways to get a solution. The techniques for studying systems fall into the following three categories: analytic, graphic and numeric.
- We can transform a system of equations in one equation of higher order
- and we have for
linear systems with initial conditions the possibility to use the
Laplace transformation.
- On the other hand we can transform a system of differential equations in a system of difference equations, i.e. sequences of numbers given by the help of recursive equations. These sequences are used as a discrete mathematical model for differential equations.
- The ClassPad300 has the dSolve- and the rSolvefunction to study systems of differential and difference equations respectively and additionally the Laplace and inverse Laplace transformation.
- Finally we have the possibility to generate large dSolve- or rSolve-terms by the help of commands for strings and characters.
- Thus the calculator can generate the large syntax for the used dSolve- and rSolvefunction.
- This is a convenient method to input a long command row not manually but by the help of a program.
- By the help of several examples the interactive work with the ClassPad300Plus is considered.
- The student can solve difficult exercises of practical applications step by step using the symbolic calculation and the graphic possibilities of the calculator.
- Sometimes several fields of mathematics are combined to solve a problem.

Example of finding the mathematical model and several ways of solution:

- The following mathematical model due to an inverted pendulum, cp.
http://www.fh-
kempten.de/deu/hochschule/fachbereiche/fbe /labore/digital/homepage/swpr/ss98/Staude Sommer/Pendel/Pendelengl.htm

INVERTED PENDULUM SIMULATION

This is a little simulation of an inverted pendulum.
You can balance the pendulum by moving the mouse left or right. But only moves within the red square affect the balance of the pendulum. You can use the mouse button to stop and restart the simulation. If your pendulum moves out of the yellow field you have to restart the simulation by reloading this page.

And now have a lot of fun...
Note: Running this applet on a slower PC than a Pentium may cause trouble.

http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/ s2003/es89kh98/es89kh98/Inverted Pendulum Balancer. mov

http://instruct1.cit.cornell.edu/courses/ee476/ FinalProjects/s2003/es89kh98/es89kh98/

- Inverted Pendulum Balancer
- The goal of this project was to build and implement an inverted pendulum balancer, in the vertical two dimensional plane, using Proportional-Integral-Derivative (PID) feedback control.
- Motivated by the School of Mechanical \& Aerospace Engineering's Feedback Control Systems course at Cornell University, the desire was to integrate the knowledge of stabilizing an unstable system using feedback control

Polvorgabe

A complete analytic model of the inverted pendulum controlled by a DC motor is derived in three parts, the pendulum-cart dynamics, the friction model, and the motor dynamics.
Here we will study the dynamics of the DC motor by the following equations:

Solue a System of Linear Differential Equations (Inverted Pendulum)
Consider the linear state space model for the armature-controlled DC motor
$\left.\frac{d}{d t}(\phi(t))=\frac{d}{d t}(\phi(t)) \geqslant E q\right\lrcorner 1$
$\left.\frac{d^{2}}{d t^{2}}(\phi(t))=-\frac{B_{m}}{J_{m}+r^{2} \times M} \times \frac{d}{d t}(\phi(t))+\frac{K_{m}}{J_{m}+r^{2} \times M} \times I \exists(t) \div E_{q}\right) 2$

$$
\frac{d^{2}}{d t^{2}}(t(t))=\frac{K_{m} \cdot I \cdot(t)}{J_{m}+M \cdot r^{2}}-\frac{B_{m} \cdot \frac{d}{d t}(t(t))}{J_{m}+M \cdot r^{2}}
$$

$\frac{d}{d t}(I \exists(t))=-\frac{K b}{L a} \times \frac{d}{d t}(\phi(t))-\frac{R a}{L a} \times I \exists(t)+\frac{1}{L a} \times V a(t) \div E q u 3$

$$
\frac{d}{d t}(I a(t))=-\frac{R a \cdot I a(t)}{L a}+\frac{V a(t)}{L a}-\frac{K b \cdot \frac{d}{d t}(t(t))}{L a}
$$

matrix form

technical farameters, e.g.:
0. $006[V=]$
$0.010625[N$
0. $0.06[\mathrm{~V} \leqslant]$
[0. $0.01[\mathrm{H}]$ La]
\qquad

Define $x(t)=\left[\begin{array}{l}\phi(t) \\ \frac{d}{d t}(\phi(t)) \\ I g(t)\end{array}\right]$
$\xi y=\operatorname{tem} i=\operatorname{now} \frac{d}{d t}(x(t))=A \times x(t)+B \times u(t)$ and $y(t)=C \times x(t)$ with $C=[1,0,0]$
$\left[\begin{array}{l}1 \\ 0.025 \\ 0.060 \\ 0.006 \\ 0.00625 \\ 0.066 \\ 1 \\ 0.061\end{array}\right] \div\left[\begin{array}{l}\mathrm{M} \\ \mathrm{r} \\ \mathrm{J}_{\mathrm{m}} \\ \mathrm{K}_{\mathrm{m}} \\ \mathrm{B}_{\mathrm{m}} \\ \mathrm{Kb} \\ \mathrm{Ra} \\ \mathrm{La}\end{array}\right]$
$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right.$
$0-109.6$
$\begin{array}{lll}0 & -6 & -1060\end{array}$
create the controllability matrix ss：
augment（ョugment（ $\mathrm{B}, \mathrm{H} \times \mathrm{B}$ ）， $\left.\mathrm{H}^{2} \times \mathrm{B}\right) \neq \mathrm{S} \mathrm{s}$
$\left[\begin{array}{lll}0 & 0 & 9606 \\ 0 & 9606 & -9696006 \\ 10006 & -1010600 & 999942406\end{array}\right]$
controllability matrix $3 s$ with full rank（ $\mathrm{S} s^{-1}$ exists），i．e．linear model is controllable：
$s s^{-1}$
$\left.\left[\begin{array}{lll}1.047666667 & 0.1041666667 & 0.001 \\ 0.105206333 & 0.00010416666 & 0 \\ 0.00010416666 & 0 & 0\end{array}\right] \right\rvert\,>$
using the eigenualues（－．4土．3j and -10 ）for Ackermann＇s formula to get the feedback gain matrix K ：

Define $q(\lambda)=(\lambda-(-.4+.3 j)) \times(\lambda-(-.4-.3 j) \times(\lambda-(-16))$
cExpand（q（ $)$
$2.5+8.25 \cdot \lambda+10.8 \cdot \lambda^{2}+\lambda^{3}$
the feedback gain matrix K ：
$\left[\begin{array}{lll}0 & 0 & 1\end{array}\right] \times 5 E^{-1} \times\left(2.5 \cdot I+8.25 \cdot \mathrm{H}^{1}+10.8 \cdot \mathrm{H}^{2}+\mathrm{H}^{3}\right){ }_{\mathrm{F}} \mathrm{K}$
aprox $\mathrm{A}-\mathrm{B} \times \mathrm{K}) \div \mathrm{matAK}$
$\left[\begin{array}{lll}0.000026041666 & -0.010597395833 & -0.9992\end{array}\right]$
$\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & -10 & 9.6 \\ -0.2604166667 & -0.02604166667 & -0.8\end{array}\right]$

Gheck the eigenualues of matRK using eigyl or solve function： eigul（matAk）
$\{0.3 \cdot \mathbf{j}-0.4,-0.3 \cdot \mathbf{j}-0.4,-10\}$
solve（det（matAK－ $\bar{\alpha} \times \mathrm{I})=\overline{0}, \lambda)$
－
$\{\lambda=-0.3 \cdot j-0.4, \lambda=0.3 \cdot j-0.4, \lambda=-10\}$

solution of $\frac{d}{d t}(x(t))=m a t A K x x(t) i s$（with unknown coefficients）
$x(t)=\left[\begin{array}{l}A 1 \\ A 2 \\ A 3\end{array}\right] \times e^{-.4 t} \cos (.3 t)+\left[\begin{array}{l}B 1 \\ B 2 \\ B 3\end{array}\right] \times e^{-.4 t} \sin (.3 t)+\left[\begin{array}{c}C 1 \\ C 2 \\ C 3\end{array}\right] \times e^{-10 t}$

（at first delete the wetor x）

Del＇var x

ロロாに

$-10 \cdot \mathrm{C} 1 \cdot \mathrm{e}^{-10 \cdot x}-\frac{2 \cdot \mathrm{~B} 1 \cdot \sin \left(\frac{3 \cdot x}{10}\right) \cdot e^{\frac{-2 \cdot x}{5}}}{5}+\frac{3 \cdot \mathrm{~B} 1 \cdot \cos \left(\frac{3 \cdot x}{10}\right) \cdot e^{\frac{-2 \cdot x}{5}}}{10}-\frac{3 \cdot \operatorname{H1} \cdot \sin \left(\frac{3 \cdot x}{10}\right) \cdot e^{\frac{-2 \cdot x}{5}}}{10}-\frac{2 \cdot \operatorname{A1} \cdot \cos \left(\frac{3 \cdot x}{10}\right) \cdot e^{\frac{-2 \cdot x}{5}}}{5}=00^{1}$

$-10 \cdot \mathrm{C} 2 \cdot \mathrm{e}^{-10 \cdot x}-\frac{2 \cdot \mathrm{~B} 2 \cdot \sin \left(\frac{3 \cdot x}{10}\right) \cdot e^{\frac{-2 \cdot x}{5}}}{5}+\frac{3 \cdot \mathrm{~B} 2 \cdot \cos \left(\frac{3 \cdot x}{10}\right) \cdot e^{\frac{-2 \cdot x}{5}}}{10}-\frac{3 \cdot \operatorname{H2} \cdot \sin \left(\frac{3 \cdot x}{10}\right) \cdot e^{\frac{-2 \cdot x}{5}}}{10}-\frac{2 \cdot \mathrm{H} 2 \cdot \cos \left(\frac{3 \cdot x}{10}\right) \cdot e^{\frac{-2 \cdot x}{5}}}{5}=-4 \varepsilon$ $\frac{d}{d x}(y S(x))=d o t P\left(\left[\begin{array}{lll}0 & 6 & 1\end{array}\right] \times \operatorname{matAK},\left[\begin{array}{lll}y 1(x) & y 2(x) & y 3(x)\end{array}\right]\right.$)
$-10 \cdot 03 \cdot e^{-10 \cdot x}-\frac{2 \cdot \mathrm{~B} 3 \cdot \sin \left(\frac{3 \cdot x}{10}\right) \cdot e^{\frac{-2 \cdot x}{5}}}{5}+\frac{3 \cdot \mathrm{~B} \cdot \cos \left(\frac{3 \cdot x}{10}\right) \cdot e^{\frac{-2 \cdot x}{5}}}{10}-\frac{3 \cdot \mathrm{~A} 3 \cdot \sin \left(\frac{3 \cdot x}{10}\right) \cdot e^{\frac{-2 \cdot x}{5}}}{10}-\frac{2 \cdot \operatorname{Bi3} \cdot \cos \left(\frac{3 \cdot x}{10}\right) \cdot e^{\frac{-2 \cdot x}{5}}}{5}=-$
Delvar $\mathrm{A} 1, \mathrm{H2}, \mathrm{A3}, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{~B} 3, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C3}$
Now solution of the linear system $\left[\begin{array}{c}\frac{d}{d x}(y 1(x)) \\ \frac{d}{d x}(y 2(x) \\ \frac{d}{d x}(y 3(x)\end{array}\right]=$ mathK $\left[\begin{array}{c}y 1(x) \\ y 2(x) \\ y 3(x)\end{array}\right]$ with unknown coefficients $\mathrm{H}, \mathrm{A} 2, \ldots, 62,63$
for the initial conditions $y \mathbf{y}=1, y 2=-1, y 3=1$ for $x=0$:
approx (equ $1 \mid x=0$)
approx (equ2|x=0)
approx (equ3|x=0)
approx (equ $1 \mid x=.1$)
-

$\{\mathrm{A} 1=0.793495935, \mathrm{~A} 2=1.06504665, \mathrm{~A} 3=1, \mathrm{~B} 1=4.608130681, \mathrm{~B} 2=-2.68130613, \mathrm{~B} 3=-2.114583333, \mathrm{C} 1=0.206504665,62=-2 . \mathrm{V}$
listToMat(getRight (approx(ans)) $\div\left[\begin{array}{c}\mathrm{A} 1 \\ \mathrm{~A} 2 \\ \mathrm{~A} 3 \\ \mathrm{~B} 1 \\ \mathrm{E} 2 \\ \mathrm{E} 3\end{array}\right]$

View window: $-0.05<x<8$ and $-1.5<y<1.5$ and graphical representation of $\mathrm{y} 1, \mathrm{y} 2, \mathrm{y} 3$

View window: $8<\mathrm{x}<16$ and $-0.03<\mathrm{y}<0.01$

Now solving the system of order 3 by the help of one equation of $3^{\text {rd }}$ order for y1 (Laplace Transformation):

$$
\begin{aligned}
& \text { * File Edit Insert fiction } \\
& \text { How solving the system of order } 3 \text { by the help of one equation of 3rd order for } y 1 \\
& \text { (Laplace Transformation): }
\end{aligned}
$$

$-2.5-8.25 \cdot \lambda-10.8 \cdot \lambda^{2}-\lambda^{3}=01$
is the characteristic equation for $\frac{d^{3}}{d t^{3}}(y 1)+10.8 \frac{d^{2}}{d t^{2}}(y 1)+8.25 \frac{d}{d t}(y 1)+2.5 \cdot y 1=0$
initial conditions $y 1(0)=1, y 1^{\prime}(0)=-1, y 1^{\prime \prime}(0)=19.6$
laplace(2. $\left.5 y+8.25 y^{\prime}+10.8 y^{\prime \prime}+y^{\prime \prime}=0, t, y, \equiv\right)$

$$
\begin{aligned}
& a n s \mid y(0)=1 \text { and } y^{\prime}(0)=-1 \text { and } y^{\prime \prime}(0)=19.6 \\
& \text { solve(ans, Lp) } \\
& -19.6-8.25 \cdot(1-L F \cdot \xi)+10.8 \cdot\left(1-\Xi+L F \cdot s^{2}\right)+\xi+2.5 \cdot L_{F}+L_{F} \cdot s^{3}-s^{2}=0 \\
& \left\{L_{F}=\frac{341+196 \cdot s+20 \cdot s^{2}}{50165 \cdot s+216 \cdot s^{2}+20 \cdot s^{3}}\right\} \\
& \text { invlaplace }\left(\frac{341+196 \cdot s+20 \cdot s^{2}}{50+165 \cdot 5+216 \cdot s^{2}+20 \cdot s^{3}}, s, x\right) \\
& \text { Define } f(x)=\frac{127 \cdot e^{-10 \cdot x}}{615}+\frac{2834 \cdot \sin \left(\frac{3 \cdot x}{10}\right) \cdot e^{\frac{-2 \cdot x}{5}}}{615}+\frac{488 \cdot 605\left(\frac{3 \cdot x}{10}\right) \cdot e^{\frac{-2 \cdot x}{5}}}{615} \\
& \text { check the initial conditions: } \\
& {\left[\left.f(x) \frac{d}{d x}(f(x)) \frac{d^{2}}{d x^{2}}(f(x)] \right\rvert\, x=0\right.}
\end{aligned}
$$

Finally another way of solution is the transformation in difference equations:

$$
\begin{gathered}
\mathbf{y}^{\prime}(\mathbf{t})=(\mathbf{y}(\mathbf{t}+\mathbf{T})-\mathbf{y}(\mathbf{t})) / \mathbf{T} \text { for small } \mathrm{T} \text {, say } \mathrm{T}=0.1 . \\
\text { Now the new system is } \\
\mathbf{x}(\mathbf{t}+\mathbf{T})=\mathbf{x}(\mathbf{t})+\mathbf{T} * \mathbf{m a t A K} * \mathbf{x}(\mathbf{t})=(\mathbf{I}+\mathbf{T} * \mathbf{m a t A K}) * \mathbf{x}(\mathbf{t}) .
\end{gathered}
$$

We use the fixpoint iteration $\mathbf{x}_{\mathbf{k}+\mathbf{1}}=(\mathbf{I}+\mathbf{T} * \mathbf{m a t A K}) * \mathbf{x}_{\mathbf{k}}$ with $\mathbf{x}_{\mathbf{0}}=[\mathbf{1}, \mathbf{- 1 , 1}]^{\mathrm{T}}$ and create 3 lists.

Now matAKI = I + T*matAK.
The program DefLis3D creates the lists for the components of x .

Finally another way of solution：transformation in difference equations See program DefLi 30 and DefSeq30．
$0.1 \div T$
I＋T×matPK•mヨtPKI

$[1$	0.1	0
0	0	0.96
－0．02604166667	－0．010260416666	0.92

main $\mathrm{DefLi} 3 \mathrm{SD}\left(\left[\begin{array}{l}1 \\ -1 \\ 1\end{array}\right]\right.$ ，566）
done
जeq（ヨ，ヨ，1，506）
$\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,4(1)$

* Edit Etrl I/ O Misc	$\boxed{\square}$
)
DefLis30 NX,	
```local a Feq(a,a,1,N)=list1 list1\geqslantlista=list1\geqslantlistb:list1*listc approx(X[1,1]) apFrox(< [2,1])}>\textrm{listb}[1 aPFrox(x[3,1]) For 2;i To N Step 1 approx(matA<I*W)方 apFrox(X[1,1])}>1\textrm{lista[i] approx(< [2,1])}>li=tb[i approx(x[3,1])*listc[i] Next Return```	
Frogram Editor	四

Finally we use the stat editor menu to create the $x-y$-lines for the given data in list1and lista, listb, listc respectively.




	list1	list.	listb	listc	$\stackrel{ }{*}$
462	462	$3.565 \mathrm{E}-8$	-1.92e-8	$-1.93 \mathrm{E}-8$	
	463	$3.373 \mathrm{E}-8$	-1.85E-8	$-1.86 \mathrm{E}-8$	
46.	46.4	$3.187 \mathrm{E}-8$	-1.79E-8	$-1.8 \mathrm{EE}-8$	
46.5	46.5	3. $1088 \mathrm{E}-8$	-1.73e-8	-1.73E-8	
466	466	$2.835 \mathrm{E}-8$	-1.66E-8	$-1.67 \mathrm{E}-8$	
	46.7	$2.668 \mathrm{E}-8$	-1.6e-8	-1.6E-8	
	468	$2.508 \mathrm{E}-8$	-1.54E-8	$-1.54 \mathrm{E}-8$	
	469	$2.353 \mathrm{E}-8$	-1.48E-8	$-1.48 \mathrm{E}-\mathrm{8}$	
	476	$2.205 \mathrm{E}-8$	-1.42E-8	-1.42E-8	
	478	$2.063 \mathrm{E}-8$	-1.36E-8	-1.36E-8	
	473	$1.796 \mathrm{E}-8$	-1.25e-8	-1.24E-8	
474	474	$1.671 \mathrm{E}-8$	-1.19E-8	$-1.18 \mathrm{E}-8$	
475	475	$1.551 \mathrm{E}-8$	-1.14E-8	$-1.13 \mathrm{E}-8$	
476	476	$1.437 \mathrm{E}-8$	-1.08E-8	$-1.08 \mathrm{E}-8$	
	477	$1.328 \mathrm{e}-8$	-1.03e-8	$-1.62 \mathrm{E}-8$	
	478	$1.225 \mathrm{E}-8$	-9.87E-9	-9.78E-9	
	479	$1.126 \mathrm{E}-8$	-9.39E-9	-9.29E-9	
	480	1.0.32E-8	-8.92E-9	$-8.82 \mathrm{E}-9$	
	481	9.43E-9	-8.46E-9	-8.36E-9	
482	482	8.584E-9	-8.02e-9	-7.91E-9	
	483	$7.781 \mathrm{E}-9$	-7.59E-9	-7.48E-9	
484	484	$7.021 \mathrm{E}-9$	-7.18E-9	-7.06E-9	
485	485	$6.303 \mathrm{E}-9$	-6.78E-9	$-6.66 \mathrm{E}-9$	
	486	$5.624 \mathrm{E}-9$	-6.4E-9	-6.28E-9	
487	487	$4.984 \mathrm{E}-9$	-6.02E-9	-5.9E-9	
	488	$4.381 \mathrm{E}-9$	-5.67E-9	-5.54E-9	
	490	$3.281 \mathrm{E}-9$	-4.99E-9	-4.87E-9	
	491	$2.782 \mathrm{E}-9$	-4.67E-9	$-4.55 \mathrm{E}-9$	
492	492	$2.314 \mathrm{E}-9$	-4.37E-9	$-4.25 \mathrm{E}-9$	
493	493	$1.876 \mathrm{E}-9$	-4.68E-9	-3.96E-9	
	494	$1.468 \mathrm{E}-9$	-3.8E-9	$-3.68 \mathrm{E}-9$	
	495	1.088E-9	-3.53E-9	-3.41E-9	
	496	$7.34 \mathrm{E}-10$	-3.27E-9	-3.16E-9	
	497	4.07E-10	-3.03E-9	-2.91E-9	
	498	1.03E-10	$-2.8 \mathrm{E}-9$	$-2.68 \mathrm{E}-9$	
566	560	-4.3E-10	-2.58E-9	$-2.26 \mathrm{EF-9}$	
Cal*					
				-	
[	$1]=1$				
Deg Auto Decimal d孟					



## The program DefSeq3D creates the equations for the sequence menu by the help of string commands．

```
Edit Etrl I/O Misc

```

DefSeq30 N-N,N
ViewWinulow 0,N,1,-5,5,5,1
ClrText:local dm,i,j, w
SeqTyF! "ヨr+1.g"
rowDim(A)〒,
Delvar a,b,c:[a,b,c]`W
For 1%i To dm Step 1
ExpToStr W[1,i],hlp1:StrLeft hlp1,1,hlp:StrJoin hlp,"口",hlp:X[i,1]今\#hlp
Str,\oin "","dotP<[",hlp:StrFiot:ate "1,0,0,",hlp2,2-2i=StrShift hlp2,hlp2,2dm-7

```

```

    ExpToStr W[1,i],hlp1:StrLeft hlp1,1,hlp1:Str-Join Hip1,"n+1",hlp1
    hlF`゙#hlp1
    Next

```

```

6%SqStart=|*SqEnd
DispSeqTbl:F'guse=DramSeqCon
Fietura

## The program DefSeq3D creates the equations for the sequence menu.



## By the help of these sequences we get the same graphical representations of $\mathbf{y} 1$ (ldot), $\mathbf{y} 2$ (square), $\mathbf{y 3}$ (cross).

* Edit Zoom fnaly	匃
	\$
1	
Rad Real	

# The file for the classpad manager you can download here: 

http://www.informatik.htwdresden.de/~paditz/paper charlotte 2007.vep

e-mail:

## paditz@informatik.htw-dresden.de

