#### Using the ClassPad300Plus in Analysis to Solve a System of Linear Differential Equations

Ludwig Paditz, University of Applied Sciences Dresden (FH), Germany



#### University of Applied Sciences Dresden (FH), Germany



#### **Abstract:**

• In real life situations quantities and their rate of change depend on more than one variable. For example, the rabbit population, though it may be represented by a single number, depends on the size of predator populations and the availability of food. In order to represent and study such complicated problems we need to use more than one dependent variable and more than one equation. Systems of differential equations are the models to use.



#### [edit] An example problem

Suppose there are two species of animals, a baboon (prey) and a cheetah (predator). If the initial conditions are 80 baboons and 40 cheetahs, one can plot the progression of the two species over time. Time is dimensionless.



One can also plot a solution which corresponds to the oscillatory nature of the population of the two species. At any given time, the solution is somewhere on the inside of these elliptical solutions.

Internet zone

Favoriten Verlauf Suchen Album Seitenhalter

- The nonlinear systems are very hard to solve explicitly, but qualitative and numerical techniques may help us to get some information on the behaviour of the solutions.
- Let us consider the ClassPad300Plus (with the new operating system OS 03.02) and discuss on some new exercises in analysis,
   e.g. solving a linear system of differential equations.

- We know several ways to get a solution. The techniques for studying systems fall into the following three categories:
   *analytic*, *graphic* and *numeric*.
- We can transform a system of equations in one equation of higher order
- and we have for

**linear systems with initial conditions** the possibility to use the

Laplace transformation.

- On the other hand we can transform a **system of differential equations** in a **system of difference equations**, i.e. sequences of numbers given by the help of **recursive equations**. These sequences are used as a **discrete mathematical model** for differential equations.
- The **ClassPad300** has the **dSolve** and the **rSolve**function to study systems of differential and difference equations respectively and additionally the **Laplace** and **inverse Laplace** transformation.

- Finally we have the possibility to generate large **dSolve-** or **rSolve-**terms by the help of commands for strings and characters.
- Thus the calculator can generate the large syntax for the used **dSolve** and **rSolve** function.
- This is a convenient method to input a long command row not manually but by the help of a program.

- By the help of several examples the interactive work with the ClassPad300Plus is considered.
- The student can solve difficult exercises of practical applications **step by step** using the symbolic calculation and the graphic possibilities of the calculator.
- Sometimes several fields of mathematics are combined to solve a problem.

# Example of finding the mathematical model and several ways of solution:

• The following mathematical model due to an **inverted pendulum**, cp.

<u>http://www.fh-</u> <u>kempten.de/deu/hochschule/fachbereiche/fbe</u> /labore/digital/homepage/swpr/ss98/Staude\_ Sommer/Pendel/Pendelengl.htm



#### **INVERTED PENDULUM SIMULATION**

This is a little simulation of an inverted pendulum.

You can balance the pendulum by moving the mouse left or right. But only moves within the red square affect the balance of the pendulum. You can use the mouse button to stop and restart the simulation. If your pendulum moves out of the yellow field you have to restart the simulation by reloading this page.

And now have a lot of fun...

Note: Running this applet on a slower PC than a Pentium may cause trouble.



http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/ s2003/es89kh98/es89kh98/Inverted\_Pendulum\_Balancer.

mov



http://instruct1.cit.cornell.edu/courses/ee476/ FinalProjects/s2003/es89kh98/es89kh98/

#### • Inverted Pendulum Balancer

- The goal of this project was to build and implement an inverted pendulum balancer, in the vertical two dimensional plane, using Proportional-Integral-Derivative (PID) feedback control.
- Motivated by the School of Mechanical & Aerospace Engineering's Feedback Control Systems course at Cornell University, the desire was to integrate the knowledge of stabilizing an unstable system using feedback control









A complete analytic model of the inverted pendulum controlled by a DC motor is derived in three parts, the pendulum-cart dynamics, the friction model, and the motor dynamics.

Here we will study the dynamics of the DC motor by the following equations:

| 🎔 File Edit Insert Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| ≝⊫≌∄⊕►⊨ в <b> A∕  <del>//</del> /√</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >     |
| olve a System of Linear Differential Equations (Inverted Pendulum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ê     |
| consider the linear state space model for the armature-controlled DC motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| $\frac{d}{dt}(\phi(t)) = \frac{d}{dt}(\phi(t)) \neq Equ1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| $\frac{dt}{dt} \left( \varphi(t) \right) = \frac{dt}{dt} \left( \varphi(t) \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| $\frac{d^2}{2}(\phi(t)) = -\frac{B_m}{2} \times \frac{d}{dt}(\phi(t)) + \frac{K_m}{2} \times Ia(t) \neq Equ2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| it <sup>2</sup> J <sub>m</sub> +r <sup>2</sup> ×M <sup>dt</sup> J <sub>m</sub> +r <sup>2</sup> ×M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| $\frac{d^2}{dt} = K_m \cdot Ia(t) = \frac{B_m \cdot \frac{U}{dt}(\phi(t))}{dt}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| $\frac{dt^2}{dt^2} \frac{dt^2}{J_m + M \cdot r^2} dt^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| d/(Ia(t))=- <mark>Kb</mark> ×d/(φ(t))- <mark>Ra</mark> ×Ia(t)+1/×Va(t)≽Equ3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| $r$ La ot La La $r = \frac{d}{d(x(x))}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| $\frac{d}{dt}(Ia(t)) = -\frac{Ra \cdot Ia(t)}{dt} + \frac{Va(t)}{dt} - \frac{KB^{*} \frac{dt}{dt}(\phi(t))}{dt}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| atrix form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| $\frac{d}{dt}(\phi(t)) \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}_{t+(x)} = \begin{bmatrix} 0 & 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| $d^2 \dots d^2 $ |       |
| $\frac{1}{dt^2} \left[ \phi(t) \right] = \int_{m+r^2 \times M} \int_{m+r^2 \times M} \left  \frac{1}{dt} \left[ \phi(t) \right] + \frac{1}{2} \right ^{\infty} \left[ \frac{1}{2} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| $\frac{d}{(I_{a}(t))} = \begin{bmatrix} 0 & -\frac{Ka}{La} & -\frac{Ka}{La} \end{bmatrix} \begin{bmatrix} I_{a}(t) & J \end{bmatrix} \begin{bmatrix} La \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 1LkgJ     M<br>  0_025[m]     r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 0.001[Nms²/rad]   Jm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| echnical parameters, e.g.: 0.006[Vs]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 0.00625[Nms/rad]   Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| L0.001(H) ] [La]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| Alg Decimal Cplx Rad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br>] |

| 🛛 🖤 File Edit Insert Action                                                                                                                                                                         | X                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| □ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□                                                                                                                                                               | <u> </u>                            |
| Define $\chi(t) = \begin{bmatrix} \phi(t) \\ \frac{d}{dt}(\phi(t)) \\ Ia(t) \end{bmatrix}$                                                                                                          | done                                |
| system is now: $\frac{d}{dt}(x(t))=A\times x(t)+B\times u(t)$ and $y(t)=C\times x(t)$ with $C=[1,0,0]$                                                                                              |                                     |
| $\begin{bmatrix} 1 \\ 0.025 \\ 0.000 \\ 0.006 \\ 0.00625 \\ 0.006 \\ 1 \\ 0.001 \end{bmatrix} \begin{bmatrix} M \\ r \\ J_m \\ B_m \\ B_m \\ B_m \\ B_m \\ B_m \\ La \end{bmatrix}$                 | 1<br>0.025<br>0<br>0.006<br>0.00625 |
|                                                                                                                                                                                                     | 0.006<br>1<br>_0.001 _              |
| $\begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{B_m}{J_m + r^2 \times M} & \frac{K_m}{J_m + r^2 \times M} \end{bmatrix} \Rightarrow R$ $\begin{bmatrix} 0 & -\frac{Kb}{La} & -\frac{Ra}{La} \end{bmatrix}$ |                                     |
|                                                                                                                                                                                                     | 0 1 0<br>0 -10 9.6<br>0 -6 -1000    |
| Alg Decimal Cplx Rad                                                                                                                                                                                |                                     |

```
♥ File Edit Insert Action
▤▫ёы◓►। ᅇ ᅝᇮᄼᆉ/◄
Г1 0 0]⇒С
                                                                                           [1 0 0]
create the controllability matrix Ss:
augment(augment(B,A×B),A<sup>2</sup>×B)>Ss
                                                                     Гø
                                                                            Й.
                                                                                       9600
                                                                      Й.
                                                                            9600
                                                                                       -9696000
                                                                     1000 -1000000 999942400
controllability matrix Ss with full rank (Ss<sup>-1</sup>exists), i.e. linear model is
controllable:
Ss<sup>-1</sup>
                                                         1.047666667 0.1041666667 0.001
                                                          0.1052083333 0.00010416666 0
                                                          0.00010416666 0
                                                                                            Й.
using the eigenvalues (-.4±.3j and -10) for Ackermann's formula to get the
feedback gain matrix K:
Define q(\lambda) = (\lambda - (-.4 + .3j)) \times (\lambda - (-.4 - .3j)) \times (\lambda - (-10))
                                                                                               done
cExpand(q(λ))
                                                                         <u>2.5+8.25·λ+10.8·λ<sup>2</sup>+λ<sup>3</sup></u>
 Alg Decimal Real Rad
                                                                                                 ....
```

| 🛛 File Edit Insert Action                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 巴 [誌](b▶] B [A/]/t√ ▼                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| the feedback gain matrix K:                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| [0 0 1]×Ss <sup>−1</sup> ×(2.5·I+8.25·A <sup>1</sup> +10.8·A <sup>2</sup> +A <sup>3</sup> )⇒K                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| epprox(8-B×K)èmet8K                                                                                                 | L0.00026041666 -0.00597395833 -0.9992_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                     | Г0 1 0 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                     | 0 -10 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| shaek the signature of matok using sight or calue function.                                                         | L-0.2604166667 -0.02604166667 -0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| check the <b>eigenvalues of matrix</b> using eigvi or solve function:                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| eigVl(matAK)                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| solve(det(matAK-λ×I)=0,λ)                                                                                           | (0.3· <b>J</b> -0.4,-0.3· <b>J</b> -0.4,-10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                     | $\{\lambda = -0.3 \cdot j = 0.4, \lambda = 0.3 \cdot j = 0.4, \lambda = -10\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| colution of $\underline{d}(x(t)) = mater (x(t))$ is (with unknown coefficients)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $r(t) = \frac{1}{82} \times e^{4t} \cos(.3t) + \frac{1}{82} \times e^{4t} \sin(.3t) + \frac{1}{62} \times e^{-10t}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| now consider the components of x(t) with the argument x:                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (at first delete the vector x)                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DelVar x                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                     | done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Define $y1(x)=A1e^{4x}\cos(.3x)+B1e^{4x}\sin(.3x)+C1e^{-10x}$                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $D_{\text{partine}} = \sqrt{2}(x) = 92e^{-1.4x} + 4x_{\text{partine}} = -1.4x_{\text{partine}} = -1.0x$             | done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                     | done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Define y3(x)=A3 $e^{4x}$ cos(.3x)+B3 $e^{4x}$ sin(.3x)+C3 $e^{-10x}$                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                     | done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <del>_</del> (y1(x))=dotP(L1 0 0]×matAK,Ly1(x) y2(x) y3(x)])⇒equ1<br> dx                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -2·x -2·x                                                                                                           | -2·x -2·x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| niy olahuaru upix kau                                                                                               | 5.000 State Stat |



| 🖤 File Edit Insert Ad       | tion                                                                                 | X   |
|-----------------------------|--------------------------------------------------------------------------------------|-----|
| ▤ऺऺक़ॖऺॖॎॖऻ•। இ ॷॎढ़य़      | ┦╼                                                                                   | >   |
| approx(equ1/x=0)            |                                                                                      |     |
| approx(equ2 x=0)            |                                                                                      |     |
| approx(equ3 x=0)            |                                                                                      |     |
| approx(equ1 x=.1)           |                                                                                      |     |
| { approx(equ2 x=.1)         |                                                                                      |     |
| approx(equ3 x=.1)           |                                                                                      |     |
| approx(y1(0)=1)             |                                                                                      |     |
| approx(y2(0)=-1)            |                                                                                      |     |
| [approx(y3(0)=1)            | A1,A2,A3,B1,B2,B3,C1,C2,C3                                                           |     |
|                             | ERROR:Overflow                                                                       | ນ 🏼 |
| change in <b>real mod</b> e | e now!                                                                               |     |
| DelVer 81.82.83.81.8        | 22.B3.C1.C2.C3                                                                       |     |
|                             | don:                                                                                 | e   |
|                             |                                                                                      |     |
| approx(equ1 x=0)            |                                                                                      |     |
| approx(equ2 x=0)            |                                                                                      |     |
| approx(equ3 x=0)            |                                                                                      |     |
| approx(equ1 x=.1)           |                                                                                      |     |
| { approx(equ2 x=.1)         |                                                                                      |     |
| approx(equ3 x=.1)           |                                                                                      |     |
| approx(y1(0)=1)             |                                                                                      |     |
| approx(y2(0)=-1)            |                                                                                      |     |
| [approx(y3(0)=1)            | A1,A2,A3,B1,B2,B3,C1,C2,C3                                                           |     |
| {A1=0.793495935,A2=         | 1.06504065,A3=1,B1=4.608130081,B2=-2.081300813,B3=-2.114583333,C1=0.206504065,C2=-2. | ▶ ᢪ |
|                             |                                                                                      |     |
|                             |                                                                                      |     |
|                             |                                                                                      |     |
|                             |                                                                                      |     |
| listToMat(cotRight(co       |                                                                                      |     |
| nistronat/getNight/ap       |                                                                                      |     |
|                             |                                                                                      | •   |
| Alg Standard Real R         | ad 🧃                                                                                 | ī   |



View window: -0.05 < x < 8 and -1.5 < y < 1.5 and graphical representation of y1, y2, y3

#### View window: 8 < x < 16 and -0.03 < y < 0.01



## Now solving the system of order 3 by the help of one equation of 3<sup>rd</sup> order for y1 (Laplace Transformation):



## Finally another way of solution is the transformation in difference equations:

y'(t) = (y(t+T)-y(t)) / T for small T, say T=0.1.

Now the new system is  $x(t+T) = x(t) + T^{matAK}x(t) = (I + T^{matAK})x(t).$ 

We use the fixpoint iteration  $\mathbf{x}_{k+1} = (\mathbf{I} + \mathbf{T}^* \mathbf{matAK})^* \mathbf{x}_k$  with  $\mathbf{x}_0 = [1, -1, 1]^T$  and create 3 lists.

#### Now $matAKI = I + T^*matAK$ .

The program **DefLis3D** creates the lists for the components of x. 29

| 💙 File Edit                                                                                                                     | : Insert                                                                                                                                      | Action                                                                                                                                                 |                                                                                                                                                                     |         |         |           |         |          |                          |                    |                  |                                |                     | X                                            |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-----------|---------|----------|--------------------------|--------------------|------------------|--------------------------------|---------------------|----------------------------------------------|
| ₿ੴ                                                                                                                              | в 🗛 🖊                                                                                                                                         |                                                                                                                                                        |                                                                                                                                                                     |         |         |           |         |          |                          |                    |                  |                                |                     | <u></u>                                      |
| Finally anot                                                                                                                    | her way:                                                                                                                                      | of sol                                                                                                                                                 | lution: t                                                                                                                                                           | ransfor | mation  | in diffei | rence e | quations | :                        |                    |                  |                                |                     | <b>▲</b>                                     |
| see progran                                                                                                                     | n DefLis:                                                                                                                                     | 3D and                                                                                                                                                 | DefSeq3                                                                                                                                                             | BD.     |         |           |         |          |                          |                    |                  |                                |                     |                                              |
| 0.1≑T                                                                                                                           |                                                                                                                                               |                                                                                                                                                        |                                                                                                                                                                     |         |         |           |         |          |                          |                    |                  |                                |                     |                                              |
| I+T×mat8Kèr                                                                                                                     | natAKI                                                                                                                                        |                                                                                                                                                        |                                                                                                                                                                     |         |         |           |         |          |                          |                    |                  |                                |                     | 0.1                                          |
| main\DefLis<br>seq(a,a,1,<br>{1,2,3,4,5                                                                                         | 3D<<br>1<br>500)⇒list<br>,6,7,8,9                                                                                                             | 500)<br>:1<br>9,10,11                                                                                                                                  | ,12,13,                                                                                                                                                             | 14,15,  | 16,17,1 | 8,19,20   | 3,21,22 | ,23,24,  | [1<br>0<br>0,<br>25,26,2 | .026041<br>27,28,2 | 66667<br>9,30,3: | 0.1<br>0<br>-0.0026<br>1,32,33 | 0416666<br>,34,35,: | 0<br>0.96<br>0.92<br>done<br>36,37,•         |
| •<br>                                                                                                                           | lieta                                                                                                                                         | lieth                                                                                                                                                  | liete                                                                                                                                                               | 1:-+5   | 1:-+4   |           |         |          |                          |                    |                  | 1                              |                     | •                                            |
| 11<br>11<br>22<br>33<br>44<br>55<br>66<br>77<br>88<br>99<br>1010<br>1111<br>1212<br>1313<br>1414<br>1515<br>1616<br>1717<br>0 1 | 1314<br>0.996<br>1.082<br>1.1587<br>1.2266<br>1.2861<br>1.3378<br>1.3821<br>1.4196<br>1.4756<br>1.4756<br>1.4949<br>1.509<br>1.5183<br>1.5236 | -1<br>0.96<br>0.8607<br>0.7669<br>0.6785<br>0.5952<br>0.5169<br>0.44345<br>0.3745<br>0.2497<br>0.1934<br>0.1934<br>0.1411<br>0.0473<br>5.5E-3<br>5.032 | 1310<br>0.8965<br>0.7989<br>0.7968<br>0.7068<br>0.5385<br>0.4619<br>0.3229<br>0.2015<br>0.2015<br>0.2015<br>0.2015<br>0.147<br>0.0493<br>5.8±-3<br>-0.031<br>-0.071 |         | 11510   |           |         |          |                          |                    |                  |                                |                     |                                              |
|                                                                                                                                 |                                                                                                                                               |                                                                                                                                                        |                                                                                                                                                                     |         |         |           |         |          |                          |                    |                  |                                |                     | ▼<br>  {   (   (   (   (   (   (   (   (   ( |
| list= list                                                                                                                      | :1                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                                     |         |         |           |         |          |                          |                    |                  |                                |                     |                                              |
| Alg Decima                                                                                                                      | al Real                                                                                                                                       | Rad                                                                                                                                                    |                                                                                                                                                                     |         |         |           |         |          |                          |                    |                  |                                |                     |                                              |

| 🛛 Y Edit Ctrl I/O Misc                                                                                                                                                                                   | ×     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                                                                                                                          | »     |
| DefLis3D NX,N                                                                                                                                                                                            |       |
| local a<br>seq(a,a,1,N)>list1<br>list1>lista:list1>listb:list1>listc                                                                                                                                     |       |
| approx(X[1,1])\$lista[1]<br>approx(X[2,1])\$listb[1]<br>approx(X[3,1])\$listc[1]                                                                                                                         |       |
| For 2 <sup>\$</sup> i To N Step 1<br>approx(matAKI×X) <sup>\$</sup> X<br>approx(X[1,1]) <sup>\$</sup> lista[i]<br>approx(X[2,1]) <sup>\$</sup> listb[i]<br>approx(X[3,1]) <sup>\$</sup> listc[i]<br>Next |       |
| Return                                                                                                                                                                                                   |       |
|                                                                                                                                                                                                          |       |
| Program Editor                                                                                                                                                                                           | (III) |

#### Finally we use the stat editor menu to create the x-y-lines for the given data in list1and lista, listb, listc respectively.

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 🖤 Edit Calc SetGraph 🛛 🕅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 🖤 Edit Calc SetGraph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| list1       lists       list6       list6       list6         1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </th <th></th> <th>[]</th> <th></th> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | list1 lista listb listc 🔺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | list1 lista listb listc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| iDeg Auto Decimal 🗰 i Deg Auto Decimal 💷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1       1       -1       -1       1         1       22       0.9       0.96       0.8607       0.7889         33       0.996       0.766944       0.70889       0.7889         44       1.08207       0.766944       0.708882         66       1.226618       0.5952846       0.5385379         77       1.2861465       0.5169964       0.46195         88       1.3378461       0.443483       0.3901648         99       1.3821944       0.3745582       0.322957         1010       1.4196503       0.3100387       0.2601504         111       1.4566541       0.2497443       0.2015699         1212       1.4756286       0.1934984       0.1470082         1313       1.4949784       0.1411278       0.0963158         1414       1.5090912       0.0924631       0.0493113         1515       1.5183375       0.0373885       5.826ε-3         1616       1.5230377       -0.63293       -0.031338         181       1.5230387       -0.160924       -0.15129         1919       1.5134989       -0.100924       -0.213249         2323       1.4563107       -0.24719       -0. | 462462       3.565 ± 8       -1.92 ± 8       -1.93 ± -         463463       3.373 ± 8       -1.85 ± 8       -1.85 ± 8       -1.85 ± 8         464464       3.187 ± 8       -1.79 ± 8       -1.8 ± -         465465       3.00 ± 8       -1.73 ± 8       -1.73 ± 8         466466       2.835 ± 8       -1.66 ± 8       -1.6 ± 8         467467       2.668 ± 8       -1.48 ± 8       -1.48 ± 8         469469       2.353 ± 8       -1.48 ± 8       -1.48 ± 8         470470       2.205 ± 8       -1.42 ± 8       -1.42 ± 8         471471       2.063 ± 8       -1.32 ± 8       -1.36 ± 8         473473       1.796 ± 8       -1.18 ± 8       -1.32 ± 8         473473       1.796 ± 8       -1.18 ± 8       -1.32 ± 4         477477       1.328 ± 8       -1.08 ± 8       -1.02 ± 4         477476       1.477 ± 8       -1.08 ± 8       -1.02 ± 4         477477       1.328 ± 8       -1.03 ± 8       -1.02 ± 4         477477       1.328 ± 8       -1.03 ± 8       -1.02 ± 4         477477       1.328 ± 8       -1.03 ± 8       -1.02 ± 4         478478       1.225 ± 8       -9.87 ± 9       -9.29 ± -9.29 ± 2         480480 |   |



## The program DefSeq3D creates the equations for the sequence menu by the help of string commands.

| 🛛 Edit Ctrl I/O Misc                                                                                                                           | × |
|------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                                |   |
| DefSeq3D NX,N                                                                                                                                  |   |
| ViewWindow 0, N, 1,5, 1.5, 1                                                                                                                   |   |
| Cirlext:local_dm,1,j,W<br>  SegTupe_"a_wag"                                                                                                    |   |
| rowDim(A)\$dm                                                                                                                                  |   |
| DelVar a,b,c:[a,b,c]>W                                                                                                                         |   |
| ExpToStr W[1,i],hlp1:StrLeft hlp1,1,hlp:StrJoin hlp,"@",hlp:X[i,1]>#hlp                                                                        |   |
| StrJoin "","dotP(l",hip:StrRotate "1,0,0,",hip2,2-2:StrShift hip2,hip2,2dm-/<br>   StrJoin ble.ble2.ble:StrJoin ble."]Xmat8KI.[ac.bc.co])".ble |   |
| ExpToStr_W[1,i], hlp1:StrLeft hlp1,1, hlp1:StrJoin hlp1, "n+1", hlp1                                                                           |   |
| hlp\$#hlp1<br> Nevt                                                                                                                            |   |
| SeqSelOn an+1:SeqSelOn bn+1:SeqSelOn cn+1:SetΣdisp Off                                                                                         |   |
| 00000000000000000000000000000000000000                                                                                                         |   |
| Dispseq  Di=Pause=Drawsequon<br>  Return                                                                                                       |   |
|                                                                                                                                                |   |
|                                                                                                                                                |   |
|                                                                                                                                                |   |
| Program Editor 📶                                                                                                                               | j |

## The program DefSeq3D creates the equations for the sequence menu.

| 🐦 Edit Graph 🔶                                     |              |              | X             |
|----------------------------------------------------|--------------|--------------|---------------|
| Ad da an       |              |              | »             |
| Recursive Explicit                                 |              |              |               |
| ⊠an+1=dotP([1 0 0]•matAKI,[a,<br>an=1              | n bn cn])    |              |               |
| <pre>BDn+1=dotP([0 1 0]•matAKI,[a,<br/>bn=-1</pre> | n bn cn])    |              |               |
| ⊠cn+1=dotP([0 0 1]•matAKI,[a,<br>co=1              | n bn cn])    |              |               |
|                                                    |              |              |               |
|                                                    |              |              |               |
| n                                                  | an           | bn           | cn 📕          |
|                                                    | 0.9          | -1<br>0.96   | 0.89          |
| 23                                                 | 0.99<br>1.08 | 0.86<br>0.76 | 0.79  <br>0.7 |
| 4<br>5                                             | 1.15         | 0.67<br>0.59 | 0.62          |
| ě,                                                 | 1.28         | 0.51<br>0.44 | 0.46          |
| ll é                                               | 1.33         | 0.37         | 0.37<br>0.32  |
| 7                                                  | 1.41         | 0.31         | 0.20          |
| 0                                                  |              |              |               |
| Rad Real                                           |              |              |               |

## By the help of these sequences we get the same graphical representations of y1(ldot), y2(square), y3(cross).



## The file for the classpad manager you can download here:

<u>http://www.informatik.htw-</u> dresden.de/~paditz/paper\_charlotte\_2007.vcp

e-mail:

paditz@informatik.htw-dresden.de