3.3.8 Merkblatt zur eindeutigen Beschreibung der Mehrdeutigkeit bei komplexen Zahlen

- 1. Haupt- und Nebenargumente: (Empfohlen wird die Angabe als dimensionslose Größe im Bogenmaß.) per DIN-Empfehlung gilt: $-\pi < \arg(z) \le \pi$ (Hauptargument) und somit $\arg_k(z) := \arg(z) + 2k\pi, \ k \in \mathbf{Z}$ (Nebenargumente), $\arg(z) := \arg_o(z)$. ($\mathbf{Z} = \{..., -2, -1, 0, 1, 2, ...\}$... Menge der ganzen Zahlen)
- 2. n-te Wurzeln $(n \in \mathbb{N} \text{ und } n \geq 2)$ als Umkehrung von $w = z^n$:

Beim Potenzieren $(w=z^n)$ wird von der Zerlegung der z-Ebene in n Winkelräume ausgegangen:

$$D_k := \left\{ z \mid \frac{-\pi + 2k\pi}{n} < \varphi \le \frac{\pi + 2k\pi}{n} \right\} \text{ mit } k = 0, 1, 2, ..., n - 1. (D_o \text{ liegt symmetrisch um die positive Re-Achse.})$$

Jeder Winkelraum geht beim Potenzieren $(w = z^n)$ in eine volle Gauß'sche Zahlenebene über. Man sagt deshalb, D_k wird im k-ten Blatt der n-blättrigen Riemann'schen Fläche f_n abgebildet.

Umgekehrt:
$$w \in k$$
-tes Blatt von $f_n \Longrightarrow z_k = \sqrt[n]{|w|} \cdot \exp\left\{j\frac{\arg(w) + 2k\pi}{n}\right\} \in \mathcal{D}_k$ für $k = 0, 1, 2, ..., n - 1$.

 z_o ist die Hauptwurzel, die stets in D $_o$ liegt. Damit ist z.B. $\sqrt[3]{-8}=-2$ eine Nebenwurzel.

3. Logarithmen als Umkehrung von $w = e^z$:

Beim Potenzieren $\left(w=e^z=e^{\operatorname{Re}(z)+j\operatorname{Im}(z)}=e^{\operatorname{Re}(z)}\cdot e^{j\operatorname{Im}(z)}\right)$ ist $\operatorname{Im}(z)$ das Argument φ der Zahl e^z , d.h., eine Veränderung von $\operatorname{Im}(z)$ mit $\pm 2k\pi$, $k\in \mathbb{N}$, wirkt sich auf e^z nicht aus ("Periodizität" der komplexen e-Funktion). Deshalb: Veranschaulichung durch die Zerlegung der z-Ebene in (unendlich viele) Parallelstreifen

$$D_k := \{ z \mid -\pi + 2k\pi < \text{Im}(z) \le \pi + 2k\pi \}, k \in \mathbf{Z} = \{0, \pm 1, \pm 2, ... \}.$$

(Bem.: D_o liegt symmetrisch um die Re-Achse.)

Jeder Parallelstreifen geht beim Potenzieren $(w=e^z)$ in eine volle Gauß'sche Zahlenebene über. Man sagt deshalb, D_k wird im k-ten Blatt der ∞ -blättrigen Riemann'schen Fläche f_∞ abgebildet.

Umgekehrt: $w \in k$ -tes Blatt von $f_{\infty} \Longrightarrow z_k = \ln_k(w) = \ln|w| + j\arg(w) + 2k\pi j, k \in \mathbf{Z}$,

 $(z_o = \ln |w| + j\arg(w) =: \ln(w) \dots \text{ Hauptwert})$

4. Allgemeine Potenz $z_1^{z_2}$:

per Definition ist
$$z_1^{z_2} := \left(e^{\ln_k(z_1)}\right)^{z_2} = e^{z_2 \ln_k(z_1)} = \exp\{z_2(\ln|z_1| + j\arg(z_1) + 2k\pi j)\}, k \in \mathbf{Z},$$

d.h., $z_1^{z_2}$ ist unendlich vieldeutig (k ... Blattnummer). Hauptwert erhält man wieder für k=0.

5. Beispiel:

Man berechne $w = (1+j)^{2-3j}$ und gebe Re(w), Im(w), |w| und arg(w) sowie $\text{arg}_l(w)$ im k-ten Blatt von f_{∞} an! Lösung: $w = (1+j)^{2-3j} =$

$$\exp\{(2-3j)\ln_k(1+j)\} = \exp\{(2-3j)(\ln\sqrt{2} + j\frac{\pi}{4} + 2k\pi j)\} = 2e^{3\pi/4 + 6k\pi}(\cos(0, 169\pi) + j\sin(0, 169\pi)), k \in \mathbf{Z}.$$

Hieraus erhält man im k-ten Blatt den Potenzwert $w = w_k$ mit

$$\operatorname{Re}(w_k) = 2e^{3\pi/4 + 6k\pi} \cos(\pi/2 + 4k\pi - 3\ln\sqrt{2}) = 2e^{3\pi/4 + 6k\pi} \cos(0, 169\pi),$$

$$\operatorname{Im}(w_k) = 2e^{3\pi/4 + 6k\pi} \sin(\pi/2 + 4k\pi - 3\ln\sqrt{2}) = 2e^{3\pi/4 + 6k\pi} \sin(0, 169\pi),$$

$$|w_k| = 2e^{3\pi/4 + 6k\pi}$$
 und $\arg_l(w_k) = \pi/2 - 3\ln\sqrt{2} + 2l\pi, \ l \in \mathbf{Z}.$

Wegen des variablen l in $2l\pi$ muß hier der vorhandene Summand $4k\pi$ nicht extra ausgewiesen werden, d.h., in diesem Beispiel hat die Blattnummer k hat nur Einfluß auf den Betrag von w.

Für das Hauptargument muß $l \in \mathbf{Z}$ so gewählt werden, daß

$$\arg(w) = \pi/2 - 3\ln\sqrt{2} + 2l\pi \text{ mit } \pi/2 - 3\ln\sqrt{2} + 2l\pi \in (-\pi, \pi] \text{ gilt.}$$

Als Hauptwert der Potenz erhält man schließlich (für k=0):

$$w = w_o = 18,195 + 10,687j = 21,101(\cos(30,43^\circ) + j\sin(30,43^\circ)) = 21,101(\cos(0,169\pi) + j\sin(0,169\pi)).$$