Vorl. Prof. Oestreich - Vertretung Prof. Paditz

Prüfungsvorbereitung 14.02.2018

- 2. Differential- und Integralrechnung (I)
- A) Zahlenfolgen, Grenzwerte von Funktionen,

Stetigkeit, Regula falsi:

- **2.1.**1e), 2c), 8g), 13, 16c)
- B) Tangentengleichung, Berechnung der Ableitung, implizite Differentiation, Ableitung von Funktionen in Polarkoordinaten:
- **2.2.**4,9c),11b),14c)
- C) Extremwertaufgaben, Monotonie und
 Krümmung von Funktionen, Regel von L'Hospital,
 Kurvendiskussionen, Taylorsche Formel,

Newton-Verfahren:

2.3.4,21b),26i),31b),41b),44

D) Berechnung von Integralen, uneigentliche Integrale:

E) Berechnung von Flächeninhalten, Bogenlängen, Schwerpunkten, Volumen und Mantelflächen von Rotationskörpern:

Aufg. 2.1.1e)

$$\lim_{n\to\infty} \left(\frac{n-1}{n+1} + \frac{1}{n} - 1 \right)$$

0

Termumfomung:

$$\frac{n-1}{n+1} + \frac{1}{n} - 1 = \frac{1-1/n}{1+1/n} + \frac{1}{n} - 1 \ \to \ \frac{1-0}{1+0} + 0 - 1 = 0 \ \text{für } n \to \infty$$

Aufg. 2.1.2c)

$$\lim_{n\to\infty} \left(\left(1 + \frac{1}{3n} \right)^{n+1} \right)$$

 $\frac{3}{1}$

Termumfomung: 3n=m

$$\left(1 + \frac{1}{3n}\right)^{n+1} = \left(1 + \frac{1}{m}\right)^{m/3+1} = \left(1 + \frac{1}{m}\right) * \left(\left(1 + \frac{1}{m}\right)^{m}\right)^{1/3}$$

$$\to (1+0) * e^{1/3} = e^{1/3} \text{ für } m \to \infty$$

Aufg. 2.1.8g)

$$\lim_{x\to\infty}\left(\frac{x}{x+\sin(x)}\right)$$

1

Termumfomung:

$$\frac{x}{x+\sin(x)} = \frac{1}{1+\sin(x)/x} \rightarrow \frac{1}{1+0} = 1 \text{ für } x \rightarrow \infty$$

Aufg. 2.1.13)

Define
$$f(x) = \begin{cases} -2*\sin(x), & x \le -\pi/2 \\ A*\sin(x) + B, -\pi/2 \le x \le \pi/2 \\ \cos(x), & x \ge \pi/2 \end{cases}$$

done

$$\lim_{x\to(-\pi/2)^{-}}(f(x))$$

2

$$\lim_{x\to(-\pi/2)^+}(f(x))$$

 $B - \frac{3 \cdot 2^{\frac{1}{3}}}{2}$

somit 2=-A+B

$$\lim_{x\to(\pi/2)^{-}}(f(x))$$

 $B + \frac{3 \cdot 2^{\frac{1}{3}}}{2}$

$$\lim_{x\to(\pi/2)^+}(f(x))$$

0

somit 0=A+B

Ergebnis: B=1, A=-1

Aufg. 2.1.16c)

Unstetigkeit bei x=0

Define
$$f(x) = \frac{x}{1+e^{1/x}}$$

done

$$\lim_{x\to 0^-} (f(x))$$

0

$$\lim_{x\to 0^+}(f(x))$$

0

hebbare Unstetigkeit!

elementar: einseitige Grenzwerte

$$\frac{x}{1+e^{1/x}} \rightarrow \frac{-0}{1+e^{-\infty}} = \frac{0}{1+0} = 0 \text{ für } x \rightarrow -0$$

$$\frac{x}{1+e^{1/x}} \rightarrow \frac{+0}{1+e^{\infty}} = \frac{0}{1+\infty} = 0 \text{ für } x \rightarrow +0$$

Aufg. 2.2.4)

Define $y(x)=(x-1)\ln(x)$

done

$$\frac{\mathrm{d}}{\mathrm{d}x}(y(x))=1$$

$$\frac{x \cdot \ln(x) + x - 1}{x} = 1$$

solve(ans, x)

 ${x=1.763222834}$

nichtlin. Gleichung: $x \cdot \ln(x) + x - 1 = x$, d.h. $x \cdot \ln(x) - 1 = 0$ lösen

Define $f(x)=x \cdot \ln(x)-1$

done

2D-Grafik Y1:---Y2:---

Regula falsi: ableitungsfreies Näherungsverfahren

Startwerte (Vorzeichenwechsel von f(x))

$$x_0:=1$$

1

 $x_1 := e$

e

$$f(x_0) = -1 < 0 \text{ und } f(x_1) = e \cdot \ln(e) - 1 = e - 1 > 0$$

Nst. x_n der Sekante durch $(x_0, f(x_0))$ und

 $(x_1, f(x_1))$:

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0) - f(x_1)}{x_0 - x_1} = \frac{y - f(x_1)}{x - x_1}$$
 und

$$\frac{f(x_0) - f(x_1)}{x_0 - x_1} = \frac{0 - f(x_1)}{x_n - x_1}$$

ergibt die Iterationsvorschrift mit $x_n=x_2$

$$x_2 := approx \left(x_1 - \frac{x_1 - x_0}{f(x_1) - f(x_0)} f(x_1) \right)$$

1.632120559

 $approx(f(x_2))$

-0.2004565756

 x_0 durch x_2 ersetzen, einseitige Konvergenz von links her, da f(x) konvex: $x:=approx(x_2)$

1.632120559

$$x := \operatorname{approx} \left(x_1 - \frac{x_1 - x}{f(x_1) - f(x)} f(x_1) \right)$$

1.745595209

$$x := \operatorname{approx} \left(x_1 - \frac{x_1 - x}{f(x_1) - f(x)} f(x_1) \right)$$

1.760937289

$$x := \operatorname{approx} \left(x_1 - \frac{x_1 - x}{f(x_1) - f(x)} f(x_1) \right)$$

1.762927911

$$x := \operatorname{approx} \left(x_1 - \frac{x_1 - x}{f(x_1) - f(x)} f(x_1) \right)$$

1.763184801

$$x := \operatorname{approx} \left(x_1 - \frac{x_1 - x}{f(x_1) - f(x)} f(x_1) \right)$$

1.76321793

$$x := \operatorname{approx} \left(x_1 - \frac{x_1 - x}{f(x_1) - f(x)} f(x_1) \right)$$

1.763222202

Ergebnis: x_n≈1,76

Bem.: Newton-Verfahren konvergiert schneller x:=1

1

$$x = \operatorname{approx}(x - \frac{f(x)}{\frac{d}{dx}(f(x))})$$

2

x:=approx(x-
$$\frac{f(x)}{\frac{d}{dx}(f(x))}$$
)

1.771848327

$$x := approx \left(x - \frac{f(x)}{\frac{d}{dx}(f(x))}\right)$$

1.763236211

$$x:=approx(x-\frac{f(x)}{\frac{d}{dx}(f(x))})$$

1.763222834

stop

Aufg. 2.2.9c)

DelVar x, y

done

$$x_0 := 4$$

4

Define $y1(x)=4*ln(x^2-4x+3)$

done

Define
$$y2(x)=y1(t)+\frac{d}{dt}(y1(t))\cdot(x-t)\mid t=x_0$$

done

Define y3(x)=y1(t)+
$$\frac{-1}{\frac{d}{dt}(y1(t))}$$
 · (x-t) | t=x₀

done

2D-Grafik	Y1:	
2D-Grank	¥2:	

Tangente:

$$y=y2(x)$$

$$y = \frac{16 \cdot (x-4)}{3} + 4 \cdot \ln(3)$$

approx(expand(y=y2(x)))

y=5.3333333333·x-16.93888418

Normale:

y=y3(x)

$$y = \frac{-3 \cdot (x-4)}{16} + 4 \cdot \ln(3)$$

approx(expand(y=y3(x)))

 $y=-0.1875 \cdot x+5.144449155$

stop

Aufg. 2.2.11b)

 $x_0:=0$

0

$$x+ye^{y^2}=0$$

$$y \cdot e^{y^2} + x = 0$$

solve($x_0+ye^{y^2}=0,y$)

 ${y=0}$

Define $x(y) = -ye^{y^2}$

done

$$1/\frac{\mathrm{d}}{\mathrm{d}y}(x(y))$$

$$\frac{-1}{2 \cdot y^2 \cdot e^{y^2} + e^{y^2}}$$

ans | y=0

-1

d.h. $y'(x_0)=-1$, Tangente in P(0,0) somit y=-x

Parameterdarstellung: Umkehrfkt. zu $x(y)=-ye^{y^2}$

x(t)=t und $y(t)=-te^{t^2}$

2D-Grafik Y1:---Y2:---

stop

Aufg. 2.2.14c)

vgl. Rep. 2.KW

Aufg. 2.3.4

DelVar x,y,t

done

Define $y(x)=x^3-2x^2+t*x-1$

done

$$\frac{\mathrm{d}}{\mathrm{d}x}(y(x))$$

 $3 \cdot x^2 - 4 \cdot x + t$

solve(ans=0, x)

$$\left\{ x = \frac{-\sqrt{-3 \cdot t + 4}}{3} + \frac{2}{3}, x = \frac{\sqrt{-3 \cdot t + 4}}{3} + \frac{2}{3} \right\}$$

solve $(-3 \cdot t + 4 \le 0, t)$

 $\left\{t>\frac{4}{3}\right\}$

Lösung: $t > \frac{4}{3}$

Aufg. 2.3.21b)

Define $y(x) = \sinh(x)$

done

Define
$$\kappa(x) = \frac{\frac{d^2}{dx^2}(y(x))}{\left(1 + \left(\frac{d}{dx}(y(x))\right)^2\right)^3(3/2)}$$

done

к(x)

$$\frac{\sinh(x)}{\left((\cosh(x))^2+1\right)^{\frac{3}{2}}}$$

2D-Grafik

Y1:---Y2:---

 $fMax(\kappa(x), x, -10, 10)$

{MaxValue=0.1924500896, x=0.8814}

 $fMin(\kappa(x), x, -10, 10)$

 $\{MinValue=-0.1924500896, x=-0.8814\}$

approx(y(x) | x=0.8814)

1.000037354

approx(y(x)|x=-0.8814)

-1.000037354

approx($\rho = \frac{1}{0.1924500896}$)

 ρ =5.196152426

Lösung: P(±0.8814,±1.000037354), ρ=5.196152426 stop

Aufg. 2.3.26i) x>0, einseitiger Grenzwert

$$\lim_{x\to 0^+} (\sin(x)*\ln(x))$$

0

 $\sin(x)*\ln(x) \rightarrow "0*(-\infty)"$ für $x \rightarrow +0$ unbestimmte Form

$$\frac{\ln(x)}{1/\sin(x)} \rightarrow "-\infty/\infty" \text{ für } x \rightarrow +0$$

Regel v. l'Hospital:

$$\frac{\frac{d}{dx}(\ln(x))}{\frac{d}{dx}(1/\sin(x))}$$

$$\frac{-(\sin(x))^2}{x \cdot \cos(x)}$$

$$\frac{-(\sin(x))^2}{x \cdot \cos(x)} = -\frac{\sin(x)}{x} * \frac{\sin(x)}{\cos(x)} \rightarrow -1*0=0 \text{ für } x \rightarrow +0$$

Aufg. 2.3.31b)

DelVar x

done

Define
$$y1(x)=(1-e^{-2x})^2$$

done

$$D(y1(x))=(-\infty,\infty), W(y1(x))=[0,\infty)$$

Nst.: $x_n=0$, $y_n=0$,

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}(y1(x))=0$$

$$-(8 \cdot e^{2 \cdot x} - 16) \cdot e^{-4 \cdot x} = 0$$

solve(ans,x)

$$\left\{x = \frac{\ln(2)}{2}\right\}$$

Wendestelle: $x = \frac{\ln(2)}{2}$,

$$y1(x)|x=\frac{\ln(2)}{2}$$

 $\frac{1}{4}$

Grenzwerte:

$$\lim_{x\to-\infty} (y1(x))$$

00

$$\lim_{x\to\infty} (y1(x))$$

1

Asymptote: y=1

konvex:
$$x \le \frac{\ln(2)}{2}$$
, konkav: $x > \frac{\ln(2)}{2}$

stop

Aufg. 2.3.41b)

Define $y2(x)=x^2*ln(x)$

done

 $x_0:=1$

1

$$taylor(y2(x), x, 1, x_0)$$

x-1

Define $y3(x)=taylor(y2(x),x,1,x_0)$

done

 $taylor(y2(x), x, 2, x_0)$

$$\frac{3\cdot(x-1)^2}{2}+x-1$$

Define $y4(x)=taylor(y2(x), x, 2, x_0)$

done

expand(y4(x))

$$\frac{3 \cdot x^2}{2} - 2 \cdot x + \frac{1}{2}$$

2D-Grafik

Y1:--Y2:--

- 1. Näherung (linear): y=x-1
- 2. Näherung: (quadratisch): $y=\frac{3\cdot x^2}{2}-2\cdot x+\frac{1}{2}$

stop

Aufg. 2.3.44 (Skizze)

Define $y(x) = \sin(x)$

done

Abstand P(0;1) und Q(x;y(x))

Define $f(x)=(x-0)^2+(1-y(x))^2$

done

f(x)

$$(\sin(x)-1)^2+x^2$$

fMin(f(x), x, -5, 5)

{MinValue=0.5200783338, x=0.4787}

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{f}(x)) = 0$$

$$2 \cdot \cos(x) \cdot \sin(x) - 2 \cdot \cos(x) + 2 \cdot x = 0$$

solve(ans, x)

 $\{x=0.4787224241\}$

Define $g(x)=\sin(2x)-2\cdot\cos(x)+2\cdot x$

done

Newton-Verfahren:

x := 0

0

$$x:=approx(x-\frac{g(x)}{\frac{d}{dx}(g(x))})$$

0.5

$$x := approx(x - \frac{g(x)}{\frac{d}{dx}(g(x))})$$

0.4786342845

$$x:=approx(x-\frac{g(x)}{\frac{d}{dx}(g(x))})$$

0.4787224227

stop

Aufg. 2.4.1b)

$$\frac{1}{4-2}{\int}_2^4 x^2 dx$$

 $\frac{28}{3}$

Aufg. 2.4.11a),c),m)

DelVar x, C

done

$$\int_{\square}^{\square} \frac{1}{x * \ln(x)} dx + C$$

 $\ln(|\ln(x)|)+C$

$$\int_{\square}^{\square} \frac{1}{\mathbf{x} * \ln(\mathbf{x})} d\mathbf{x} = \int_{\square}^{\square} \frac{1}{\mathbf{x}} * (\ln(\mathbf{x}))^{-1} d\mathbf{x},$$

Subst.: $t=\ln(x)$, $dt=\frac{1}{x}dx$

$$\int_{\square}^{\square}\!\!t^{-1}\!\,\mathrm{d}t$$

ln(|t|)

ans+C|t=ln(x)

ln(|ln(x)|)+C

stop

$$\int_{\square}^{\square} \frac{x+1}{(x-1)^3} dx$$

 $\frac{-x}{(x-1)^2}$

$$\frac{x+1}{(x-1)^3} = \frac{x-1+2}{(x-1)^3} = \frac{1}{(x-1)^2} + \frac{2}{(x-1)^3}$$
 (PBZ)

$$\int_{\square}^{\square} \frac{1}{(x-1)^2} dx + \int_{\square}^{\square} \frac{2}{(x-1)^3} dx$$

 $\frac{-1}{x-1} - \frac{1}{(x-1)^2}$

simplify(ans)

 $\frac{-x}{(x-1)^2}$

stop

$$\int_{\Box}^{\Box} \frac{e^{X} + 2}{e^{X} + 1} dx + C$$

 $2 \cdot x + C - \ln(e^{x} + 1)$

$$\frac{e^{X}+2}{e^{X}+1} = \frac{e^{X}+1+1}{e^{X}+1} = 1 + \frac{1}{e^{X}+1}$$

Subst.: $t=e^{X}$, $dt=e^{X}dx=tdx$

$$\int_{\square}^{\square} (1 + \frac{1}{t+1}) \frac{1}{t} dt$$

$$-\ln(|t+1|)+2\cdot\ln(|t|)$$

ans+ $C \mid t = e^{X}$

 $2 \cdot x + C - \ln(e^{X} + 1)$

PBZ:

expand($(1+\frac{1}{t+1})\frac{1}{t}$,t)

 $\frac{-1}{t+1}$ + $\frac{2}{t}$

usw.

Aufg. 2.4.13a),b),c)

$$\int_{1}^{\sqrt{19}} \frac{x}{\sqrt{4x^2 2+5}} dx$$

3

Subst.: $t=4x^2+5$, dt=8xdx

$$\int_9^{81} \frac{1}{\sqrt{t}} \frac{1}{8} dt$$

<u>3</u>

$$\int_0^{\sqrt{3}} x * tan^{-1}(x) dx$$

 $\frac{2\cdot\pi}{3}$ $-\frac{\sqrt{3}}{2}$

part. Integration:

 $x \rightarrow x^2/2$ (integrieren)

 $tan^{-1}(x) \rightarrow 1/(1+x^2)$ (differenzieren)

expand($x^2/2*1/(1+x^2)$, x)

$$\frac{-1}{2\boldsymbol{\cdot}\left(\mathbf{x}^2+1\right)}\boldsymbol{+}\frac{1}{2}$$

$$(x^2/2*tan^{-1}(x)|x=\sqrt{3})-\int_0^{\sqrt{3}}\frac{-1}{2\cdot(x^2+1)}+\frac{1}{2}dx$$

 $\frac{2\cdot\pi}{3}$ $-\frac{\sqrt{3}}{2}$

approx(ans)

1.228369699

$$\int_{2}^{8} \frac{1}{t^2 + t} dt$$

 $-\ln(3) + 2 \cdot \ln(2)$

PBZ:

expand($\frac{1}{t^2+t}$, t)

 $\frac{-1}{t+1}$ + $\frac{1}{t}$

$$\int_2^8 \frac{-1}{t+1} + \frac{1}{t} \mathrm{d}t$$

 $-\ln(3) + 2 \cdot \ln(2)$

simplify(ans)

 $\ln\left(\frac{4}{3}\right)$

Aufg. 2.4.19b)

vgl. Rep. 4.KW

Aufg. 2.5.8g)

DelVar x, y, t

done

Define xt1(t)=ln(t)

done

Define $yt1(t)=2\sqrt{t}$

done

2D-Grafik

Y1:--Y2:--

$$\sqrt{\left(\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{xt}1(t))\right)^2 + \left(\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{yt}1(t))\right)^2}$$

 $\sqrt{\frac{t+1}{t^2}}$

$$\int_{3}^{8} ans dt$$

 $\ln(3) - \ln(2) + 2$

simplify (ans)

 $\ln\left(\frac{3}{2}\right)+2$

approx(ans)

2.405465108

s≈2.405

Integrand: t>0

$$\sqrt{\frac{t+1}{t^2}} = \frac{1}{t} \sqrt{t+1}$$

$$\int_{\,\,\Box}^{\,\,\Box} \frac{1}{t} \sqrt{t\!+\!1} \, dt$$

 $-\ln(|\sqrt{t+1}+1|)+\ln(|\sqrt{t+1}-1|)+2\cdot\sqrt{t+1}$

simplify (ans)

$$\ln\left(\left|\frac{\sqrt{t+1}-1}{\sqrt{t+1}+1}\right|\right)+2\cdot\sqrt{t+1}$$

Subst.: t+1=u^2, dt=2udu

$$\int_{-\Box}^{\Box} \frac{2u}{u^{\smallfrown}2^{-1}} u du$$

 $-\ln(|u+1|)+\ln(|u-1|)+2\cdot u$

PBZ:

expand($\frac{2u}{u^2-1}u$, u)

 $\frac{-1}{n+1} + \frac{1}{n-1} + 2$

 $-\ln(|u+1|) + \ln(|u-1|) + 2 \cdot u | u = \sqrt{t+1}$

 $-\ln(|\sqrt{t+1}+1|)+\ln(|\sqrt{t+1}-1|)+2\cdot\sqrt{t+1}$

usw.

stop

Aufg. 2.5.12b) (Skizze)

$$A := \int_0^2 3\sqrt{x} \, dx$$

 $\frac{3\cdot 2^{\frac{1}{3}}}{2}$

 $xs := \frac{1}{A} * \int_0^2 x * \sqrt[3]{x} \, dx$

<u>8</u>

 $ys:=\frac{1}{2A}*\int_{0}^{2} (3\sqrt{x})^{2} dx$

 $\frac{2\cdot 4^{\frac{1}{3}}}{5\cdot 2^{\frac{1}{3}}}$

simplify(ans)

$$\frac{1}{2\cdot 2^{\frac{1}{3}}}$$

stop

Aufg. 2.5.15a)

DelVar x

done

$$V\!\!:=\!\!\pi\!\!*\!\!\int_3^5 (\sqrt{x^2-9})^2 dx$$

 $\frac{44 \cdot \pi}{3}$

approx(ans)

46.07669225

2D-Grafik	Y1: Y2:
3D-Grafik	

Aufg. 2.5.17b) (Skizze)

Herzkurve (Kardioide)

Polgerade=x-Achse

obere Kurvenstück rotiert:

Define $r(\phi)=a*(1+cos(\phi))$

done

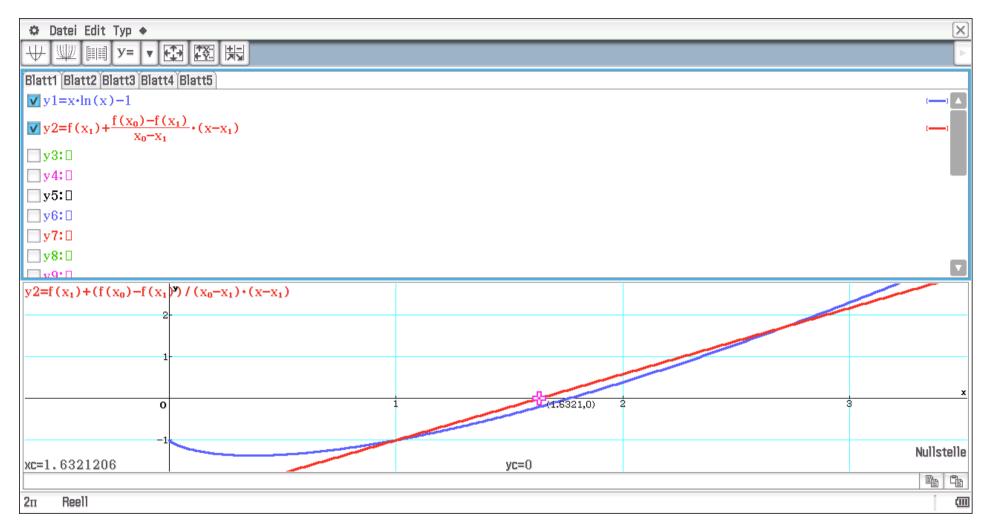
$$\frac{\mathrm{d}}{\mathrm{d}\varphi}(\mathrm{r}(\varphi))$$

 $-a \cdot \sin(\varphi)$

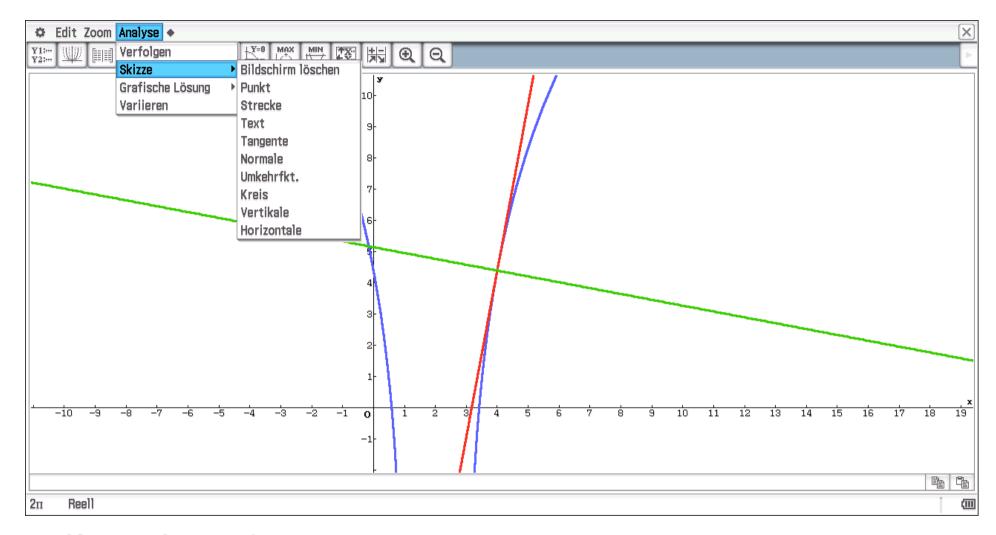
$$M:=2\pi*\int_0^\pi r(\varphi)*\sin(\varphi)\sqrt{(-a*\sin(\varphi))^2+(r(\varphi))^2}d\varphi$$

$$\frac{32 {\boldsymbol{\cdot}} a^2 {\boldsymbol{\cdot}} \pi}{5}$$

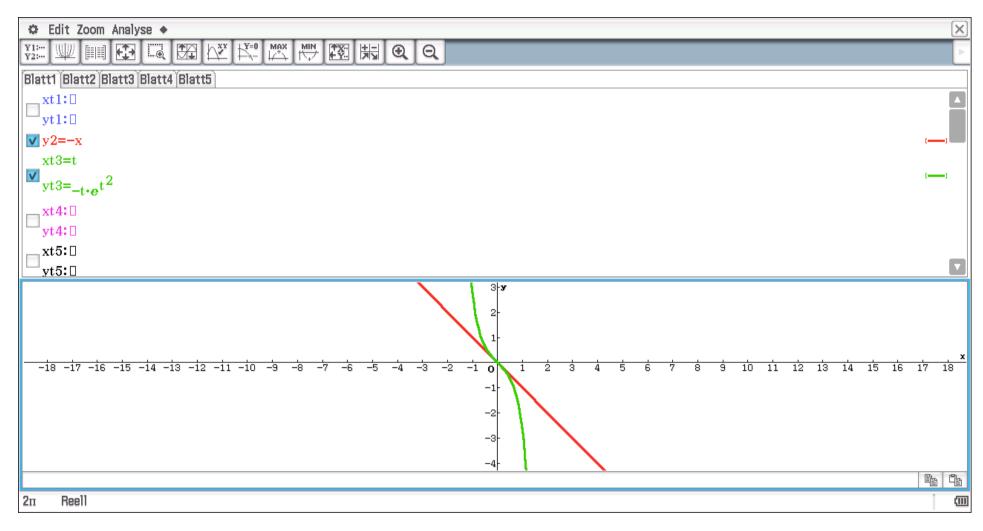
stop



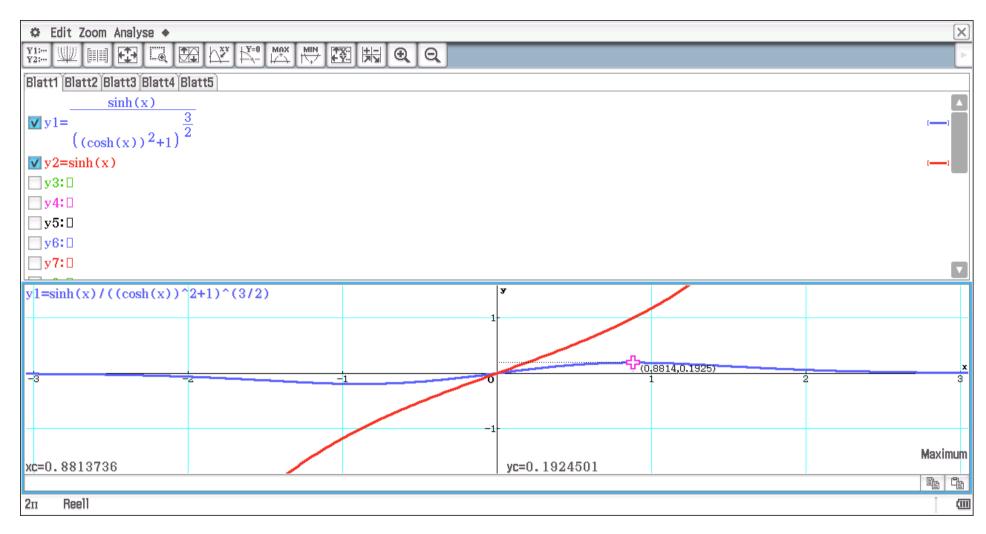
Grafik zu Aufg. 2.2.4



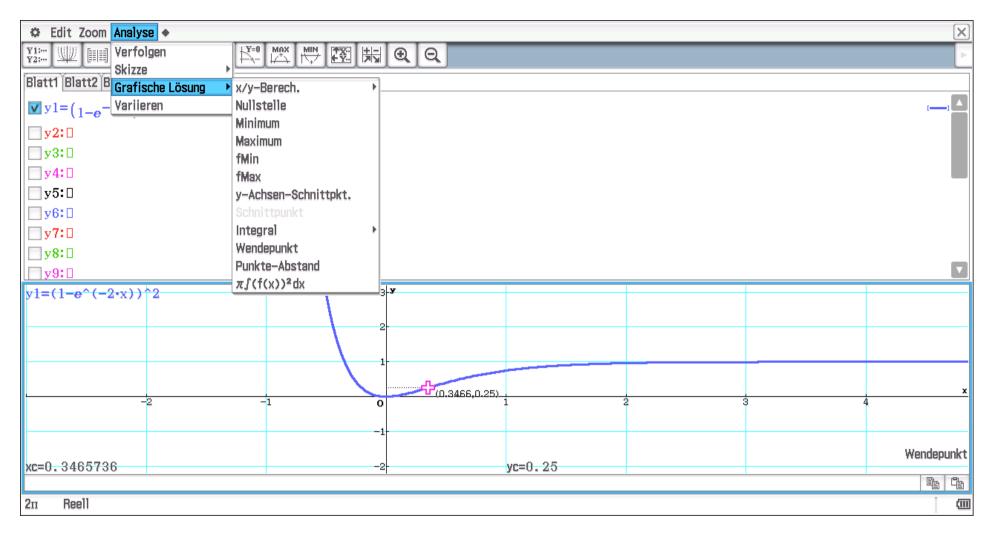
Grafik zu Aufg. 2.2.9c)



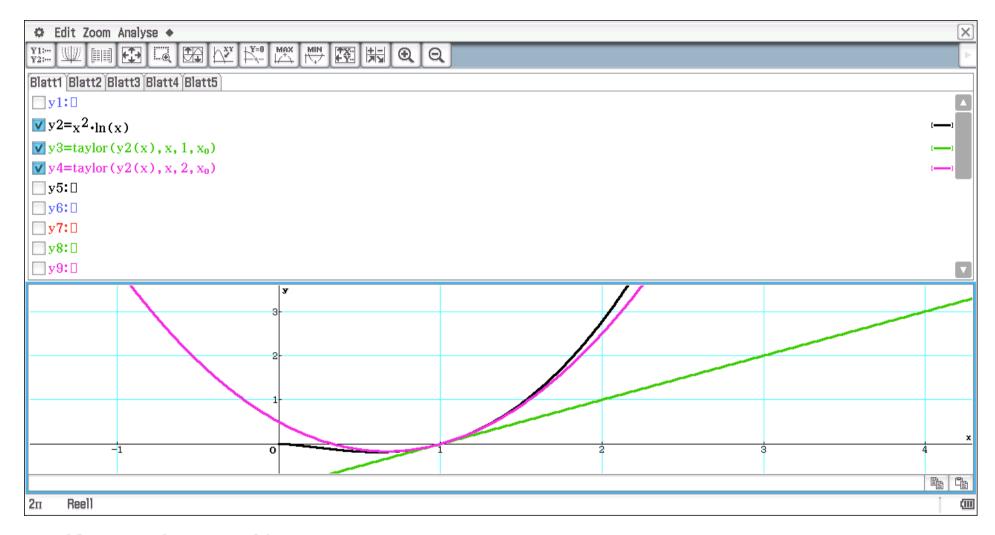
Grafik zu Aufg. 2.2.11b)



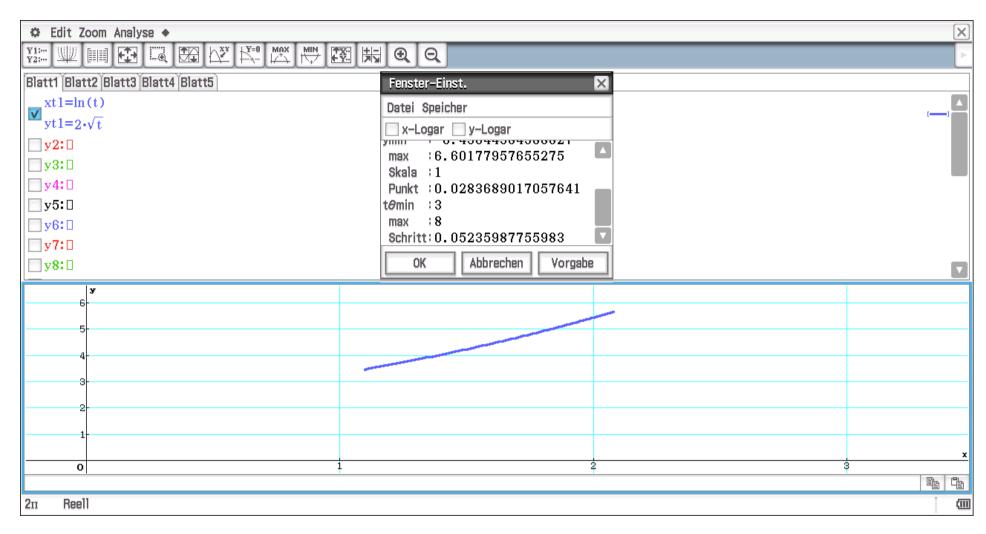
Grafik zu Aufg. 2.3.21b)



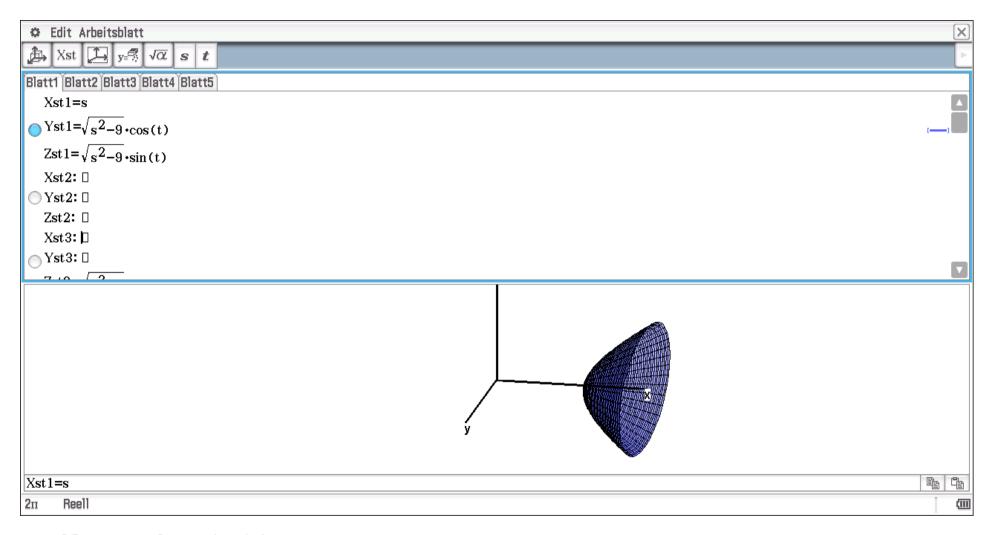
Grafik zu Aufg. 2.3.31b)



Grafik zu Aufg. 2.3.41b)



Grafik zu Aufg. 2.5.8g)



Grafik zu Aufg. 2.5.15a)

