Rechnen und graphische Darstellungen mit komplexen Zahlen

Autor: Prof. Dr. Ludwig Paditz

Anwendungsbeispiele aus Schule und Studium für den ALGEBRA FX 2.0

CASIO Europe GmbH (Hrsg.)

© CASIO Europe GmbH, Norderstedt 2004. 2. korrigierte Auflage, August 2004. Alle Rechte vorbehalten.

Internetadresse: http://www.casio-europe.com

Text und Abbildungen wurden mit größter Sorgfalt erarbeitet. Für eventuell verbleibende Fehler und deren Folgen kann keine Haftung übernommen werden.

Umschlaggestaltung: CONSEQUENCE Werbung und Kommunikation GmbH, Hamburg Layoutgestaltung: Prof. Dr. Ludwig Paditz, Dresden Druck und Bindung: Contaq Repro und Produktion GmbH, Hamburg

CASIO ist ein eingetragenes Warenzeichen.

Einleitung

Moderner Mathematikunterricht in Schule oder Studium ist ohne elektronische Rechenhilfsmittel undenkbar geworden.

Obwohl es sich dabei oftmals um klassische Lehrinhalte handelt, mit denen sich schon frühere Schüler- und Studentengenerationen auseinandersetzen mußten, unterliegt auch die Darstellung mathematischer Lehrinhalte einem Wandel und wird von den Erfordernissen unserer Zeit mitbestimmt:

Anspruchsvollere Aufgaben sind zu lösen, die nicht mehr nur mit Zettel und Bleistift bewältigt werden können.

Schüler technischer Gymnasien oder Fachoberschulen und auch zukünftige Ingenieure insbesondere auf den Gebieten der Kommunikationstechnik, der Elektrotechnik, der Automatisierungs- und Computertechnik und verwandter Gebiete lernen spätestens in der mathematischen Grundlagenausbildung ihres Studiums die komplexen Zahlen kennen.

Praxisorientierte Mathematikausbildung bedeutet nicht nur Berücksichtigung praktischer Anwendungsbeispiele und Computerpraktikum sondern auch Berücksichtigung international üblicher Standards zur Mathematik und insbesondere von DIN-Empfehlungen hier speziell beim Umgang mit komplexen Zahlen.

Mit dem vorliegenden Buch wird der Versuch unternommen, dem formulierten Anspruchsniveau eines modernen Mathematikunterrichts nahezukommen, indem zum zielgerichteten Einsatz des ALGEBRA FX 2.0 Unterrichtsempfehlungen für das Rechnen mit komplexen Zahlen gegeben werden.

Schnell stellt man fest, dass der ALGEBRA FX 2.0 "DIN-gerecht" programmiert ist.

Lehrer wie auch Schüler und Studenten finden anhand der ausführlich dargestellten und erprobten Unterrichtsbeispiele Anregungen zum Umgang mit dem ALGEBRA FX 2.0 und können so ihre Kenntnisse über komplexe Zahlen festigen und vertiefen.

Neben dem numerischen Rechnen mit komplexen Zahlen wird auch auf graphische Darstellungsmöglichkeiten in der Gaußschen Zahlenebene eingegangen und schließlich werden im CAS-Menü symbolische Umformungen mit komplexen Zahlen und entsprechende Formelstrukturen erläutert.

So erweist sich der ALGEBRA FX 2.0 auch im Bereich der komplexen Zahlen als nützliches elektronisches Rechenhilfsmittel für anspruchsvolle Aufgaben, die in der Unterrichtsstunde oder zu Hause im Selbststudium erarbeitet werden können, insbesondere auch dann, wenn aus Zeitgründen ein Computerlabor nicht aufgesucht werden kann oder im Stundenplan nicht vorgesehen ist.

Der Leser lernt die Arbeit in unterschiedlichen Menüs des ALGEBRA FX 2.0 (z.B. RUN· MAT-Menü (numerisches Rechnen), GRPH·TBL-Menü (Funktionsplots), STAT-Menü (Scatterplots) und CAS-Menü (symbolisches Rechnen) sowie EQUA-Menü (Gleichungen

Einleitung

und Gleichungssysteme)) innerhalb einer komplexen Aufgabenstellung kennen, wenn gleichzeitig numerische, graphische und symbolische Lösungswege dargestellt werden. An vielen Stellen werden Hintergrundbilder erzeugt, um die grafischen Darstellungen noch eindrucksvoller zu gestalten.

Der ALGEBRA FX 2.0 erweist sich in didaktischer Hinsicht als besonders nützliches elektronisches Hilfsmittel: Der Anwender muß zunächst selbst die Lösungsstrategie zur Aufgabe entwickeln und die Rechenschritte festlegen. Dann erfolgt der Einsatz entsprechender Taschenrechnerbefehle in vorher auszuwählenden Menüs.

Dieses interaktive Arbeiten ist für den Lernprozeß besonders wertvoll:

Der Schüler bekommt nicht sofort das fertige Endergebnis ohne den Lösungsweg zu kennen, sondern er muß den erdachten Lösungsweg Schritt für Schritt mit seinem Taschenrechner umsetzen. Der Schüler trainiert dabei die Lösungswege und der Taschenrechner sorgt für fehlerfreie Zwischenergebnisse und anschauliche graphische Darstellungen, die ohne den Graphik-Taschenrechner nicht so einfach zu finden sind. Der Formelhintergrund kann dabei im CAS-Menü bereitgestellt und abgespeichert werden.

Für das Verständnis dieses Buches werden Grundkenntnisse im Umgang mit dem AL-GEBRA FX 2.0 vorausgesetzt.

Text und Abbildungen wurden auf Grundlage der zurzeit vorliegenden Produktversion des ALGEBRA FX 2.0 mit größter Sorgfalt erarbeitet. Hinweise und Anregungen, die sich durch die Arbeit mit diesem Buch ergeben werden, nehmen der Herausgeber wie auch der Autor jederzeit gern entgegen.

Für eventuell enthaltene Fehler kann keine Haftung übernommmen werden.

Dieses Werk ist urheberrechtlich geschützt. Dies betrifft auch die Übersetzung und die Vervielfältigung oder die Verbreitung unter Verwendung elektronischer Systeme, sowie die Vervielfältigung für Zwecke der Unterrichtsgestaltung ohne schriftliche Genehmigung des Herausgebers.

In der 2. Auflage dieses Buches wurden bekannt gewordene Druckfehler korrigiert.

Dresden, im August 2004

Prof. Dr. Ludwig Paditz

Kontaktadresse des Autors:

Hochschule für Technik und Wirtschaft (FH) FB Informatik/Mathematik Friedrich-List-Platz 1 D-01069 Dresden

paditz@informatik.htw-dresden.de http://www.informatik.htw-dresden.de/~paditz/

Inhaltsverzeichnis

1. De	finition und Darstellungsformen komplexer Zahlen (Addition und Multiplikation) 7
e	Was den Schüler hier besonders interessiert:
	Was ist eine unendlich große komplexe Zahl (im Reellen kennt man $+\infty$ und $-\infty$)?
2. He	rleitung der Umkehroperationen zu "+" und "·" (Subtraktion und Division) 13
3. Die	e Potenz z^N einer komplexen Basis z 16
e	Was den Schüler hier besonders interessiert:
	Wie erkennt man bei gleichen Potenzwerten \mathbf{z}^{N} von welcher Basis \mathbf{z} ausgegangen wurde ?
4. Die	e Potenz e ^z mit einem komplexen Exponenten z
e	Was den Schüler hier besonders interessiert:
	Warum ist die komplexe e-Funktion eine periodische Funktion ?
5. Die	N-te Wurzel einer komplexen Zahl z (Haupt- und Nebenwurzeln)
e	Was den Schüler hier besonders interessiert:
	Warum ist -2 nicht die komplexe Hauptwurzel der Aufgabe (-8) ^{1/3} ?
	Warum erhält man für die Aufgabe (-8) ^{1/3} im Real -Modus bzw. Complex-Modus unterschiedliche Ergebnisse?
	Warum erhält man beim Wurzelziehen im Komplexen mit dem Taschenrechner stets nur Zahlen im I. oder IV. Quadranten?
6. De	r komplexe Logarithmus einer komplexen Zahl z (Haupt- und Nebenwerte) 30
e	Was den Schüler hier besonders interessiert:
	Warum erhält man beim Logarithmieren im Komplexen mit dem Taschenrechner stets nur Zahlen in einem waagerechten Parallelstreifen um die x-Achse?
7. Ein	e Bemerkung zur komplexen Signum-Funktion (Vorzeichenfunktion)
e	Was den Schüler hier besonders interessiert:
	Wie berechnet man das "Vorzeichen" einer komplexen Zahl z?

8.	Die	allgemeine Potenz $z_1^{Z_2}$ (Haupt- und Nebenwerte)	37
	ø	Was den Schüler hier besonders interessiert:	
		Warum ist die allgemeine Potenz $\mathbf{z}_1^{\mathbf{Z}_2}$ unendlich vieldeutig?	
9.	Die	komplexen trigonometrischen Funktionen $w = sin(z)$ und $w = cos(z)$	13
	۵		
	Ø	Was den Schüler hier besonders interessiert:	
		Warum sind die trigonometrischen Funktionen w=sin(z) und w=cos(z) unbeschränkt?	
10.	Ber	nerkungen zu den komplexen Arcusfunktionen 4	18
	ø	Was den Schüler hier besonders interessiert:	
		Wie ist die Umkehrabbildung der nicht eineindeutigen sin-Funktion definiert?	
11.	Die	hyperbolischen Funktionen im komplexen Zahlenbereich	51
12.	Kor	nplexe Polynome, deren Nullstellen und Faktorisierung in Linearfaktoren 5	53
13.	Kor	nplexe Fourierreihen und Integration (Parameterintegrale)	57
14.	Ana	alytische Funktionen und partielle Ableitungen6	30
15.	Gra	phische Darstellung von Punktmengen in der Gaußschen Zahlenebene6	32
16.	Kur dar	rven in der Gaußschen Zahlenebene und deren komplexe Parameter- stellungen	35
17.	Kor	nplexe Matrizen, Determinanten sowie Gleichungssysteme	'0
18.	(Ke	ine) Scherzaufgaben mit komplexen Zahlen - "Wo steckt der Fehler?"	'2
	Lös	sungshinweise zu den weiterführenden Aufgaben der einzelnen Kapitel	' 4
	Stic	chwortverzeichnis	98

Definition und Darstellungsformen komplexer Zahlen (Addition und Multiplikation)

Was den Schüler hier besonders interessiert:

Was ist eine unendlich große komplexe Zahl (im Reellen kennt man $+\infty$ und $-\infty$)?

Der Taschenrechner interpretiert jede komplexe Zahl z in der Form $z = a + b \cdot i$ als Punkt oder Koordinatenpaar (a, b) in der der Gaußschen Zahlenebene und berechnet den Betrag (Absolutwert) r = |z| und das Argument (Winkel) $\theta = \arg(z)$ mit Hilfe des Koordinatenpaares (a, b).

Beispiel:

Zu berechnen sind der Betrag (r) und das Argument (θ) für die komplexe Zahl **3+4**·i, wobei der Winkelmodus auf Altgrad eingestellt werden soll.

Hinweis zur Wahl des Zahlensystems ("Mode"): Wählen Sie in der Einstellanzeige (SET UP) für "Mode" unbedingt "Comp"!

Im **RUN·MAT-Menü** werden die Funktionstasten **PTN F3 [CPLX]-[1:Abs]/[2:Arg]** benutzt, nachdem zuvor über die Tastenfolge **CTRI F3 [SET UP]** der Zahlenmodus (komplexen Zahlen in arithmetischer Darstellung **a+bi**) und der Winkelmodus (Altgrad **Deg**) voreingestellt wurden:

 AC (PTN) F3 (CPLX) (1 (Abs)

 (3) + 4 (SHIFT (0) (i)) EXE

 (Berechnung des Betrages (Absolutwertes))

 AC (PTN) F3 (CPLX) (2) (Arg)

 (3) + (4) (SHIFT (0) (i)) (EXE)

 (Berechnung des Arguments (Winkels))

Reelle Achse

Imaginäre Achse

Mit Beispielen stellt man sofort fest, dass die Winkel stets im Bereich von $-180^{\circ} < \theta \le 180^{\circ}$, dem soganannten **Hauptargumentbereich**, ausgegeben werden (entsprechend im Bogenmaß von $-\pi < \theta \le \pi$). Für den Betrag einer komplexen Zahl gilt stets $0 \le r < \infty$ und damit lautet die Antwort auf die Eingangs gestellte Frage: Sobald unter einem beliebigen Winkel der Betrag unendlich groß wird, handelt es sich um eine unendlich große komplexe Zahl, die symbolisch mit $z = \infty$ bezeichnet wird.

) Damit gibt es in *C* nur ein (vorzeichenloses und richtungsloses) Unendlich!

Mit $C = \{ z = (a,b) \mid a \in R \text{ und } b \in R \} = \{ z = a+bi \mid (a,b) \in R^2 \text{ und } i^2 = -1 \}$ wird die Menge der komplexen Zahlen bezeichet. In der Algebra spricht man auch vom Körper der komplexen Zahlen.

Aus algebraischer Sicht ist der Zahlenkörper $C = \{ z = (a,b) \mid a \in R \text{ und } b \in R \}$ durch folgende drei Eigenschaften definiert (weitere Rechenoperationen werden nachträglich abgeleitet und müssen nicht per Definition festgelegt werden):

1	Gleichheitseigenschaft:	$z_1 = z_2 \iff a_1 = a_2$ und $b_1 = b_2$
2	Additionsregel:	$z_1 + z_2 := (a_1 + a_2, b_1 + b_2)$
3	Multiplikationsregel:	$z_1 \bullet z_2 := (a_1 \bullet a_2 \bullet b_1 \bullet b_2, a_1 \bullet b_2 + a_2 \bullet b_1)$

Beispiel (Additionsregel im RUN·MAT-Menü):

Gegeben sind die Zahlen $z_1 = (1,2) = 1+2i$ und $z_2 = (2,3) = 2+3i$. Zu berechnen ist $z_1 + z_2$ nach der Additionsregel. Mit der Tastenfolge

AC (1 + 2 SHFT (i) + (2 + 3 SHFT (i) = 1 + z_2 = (1+2)+(2+3)i = 3 + 5i.

Beispiel (Multiplikationsregel im RUN·MAT-Menü):

Gegeben sind die Zahlen $z_1 = (2,1) = 2+i$ und $z_2 = (2,-1) = 2-i$. Zu berechnen ist $z_1 \cdot z_2$ nach der Multiplikationsregel. Mit der Tastenfolge

erhält man das gewünschte Ergebnis $z_1 \cdot z_2 = 2 \cdot 2 \cdot 1 \cdot (-1) + (2 \cdot (-1) + 1 \cdot 2)i = 5$.

Beispiel (Multiplikationsregel im RUN·MAT-Menü):

Gegeben sind die Zahlen $z_1 = (0,1) = i$ und $z_2 = (0,1) = i$ (imaginäre Einheit). Zu berechnen ist $z_1 \cdot z_2$ nach der Multiplikationsregel. Mit der Tastenfolge

AC SHIFT O(i) X SHIFT O(i) EXE

erhält man das gewünschte Ergebnis
$$z_1 \cdot z_2 = 0 \cdot 0 \cdot 1 \cdot 1 + (0 \cdot 1 + 1 \cdot 0)i = -1$$
.

Hinweis: Wegen $i \cdot i = -1$ wird i auch als Hauptwurzel von -1 bezeichnet: SHET $\mathbb{Z}^{2}(-) \bigoplus 1$ EXE

Weitere Befehle im RUN·MAT-Menü:

Im Zahlenpaar z = (a, b) ($z = a + i \cdot b$) heißt die erste reelle Koordinate a**Realteil** von z, kurz a = Re(z), die zweite reelle Koordinate b Imaginärteil von z, kurz b = Im(z). Taschenrechnersymbolik: ReP(z) bzw. ImP(z)

Beispiel:

Zu berechnen sind der Realteil und der Imaginärteil der Zahl z = 2 + 5i:

Zum Zahlenpaar z = (a,b) ($z = a + b \cdot i$) heißt die Zahl $\overline{z} = (a,-b)$ ($\overline{z} = a - b \cdot i$) die zu z konjugiert komplexe Zahl. Taschenrechnersymbolik: **Conjg**(z)

Beispiel:

Zu berechnen ist die konjugiert komplexe Zahl zur komplexen Zahl z = 2 + 4i:

AC	OPTN	F 3	(CF	PLX)	3	(C	on	jg)	
\Box	2	(+)	4	SHIFT	0	(i)	\square	EXE	

Conj9 (2+4i) 2-4i

(1+2i)+(2+3i) (2+i)×(2-i) 5

	_
7:⊧a+bi	
6:⊧r€^8i	
5:ImP	
4:ReP	
.3∶Conje	
↓2:Ars	
LIST MATLCPLX	CALCINUM D

Beispiel (Gleichheitseigenschaft):

Nachzuprüfen ist die folgende Gleichheit: $(\cos\theta_1 + i \cdot \sin\theta_1) \cdot (\cos\theta_2 + i \cdot \sin\theta_2) = \cos(\theta_1 + \theta_2) + i \cdot \sin(\theta_1 + \theta_2)$ Die Multiplikationsregel ergibt zunächst auf der linken Seite die Koordinaten (Realteil und Imaginärteil)

$$a_1 \cdot a_2 \cdot b_1 \cdot b_2 = \cos\theta_1 \cdot \cos\theta_2 \cdot \sin\theta_1 \cdot \sin\theta_2$$
 and $a_1 \cdot b_2 + a_2 \cdot b_1 = \cos\theta_1 \cdot \sin\theta_2 + \sin\theta_1 \cdot \cos\theta_2$

dann im Vergleich mit der rechten Seite (die bekannten Additionstheoreme für trigonometrische Funktionen)

 $\cos\theta_1 \cdot \cos\theta_2 - \sin\theta_1 \cdot \sin\theta_2 = \cos(\theta_1 + \theta_2)$ und $\cos\theta_1 \cdot \sin\theta_2 + \sin\theta_1 \cdot \cos\theta_2 = \sin(\theta_1 + \theta_2)$

Die Koordinatenumwandlung beruht auf den bekannten Formeln $x = r \cdot \cos\theta$ und $y = r \cdot \sin\theta$ (hier r = 1):

• Kartesische Koordinaten z = (x,y)

• Polarkoordinaten $z = (r, \theta)$

Nun soll die praktische Kontrolle der Gleichheitseigenschaft im **CAS**-Menü nachvollzogen werden: **[TRNS]**-**[6: smplfy]**. Die Winkel θ_1 und θ_2 wurden hierbei zur Vereinfachung durch die Variablen V und W ersetzt:

Überprüfung der Additionsregel im CAS-Menü mit [TRNS]-[A: cExpnd]/[6: smplfy]/[8: collct]:

<u>cEzpand((A+iB)+(C+iD)</u> A+C+(B+D)i	simplify((A+iB)+(C+iD A+(B+D)i+C	collect((A+iB)+(C+iD) (B+D)i+A+C
TRNSICAL CEQUAL CAN IGREAL D	TRNSICALCIEQUAL CAN IGRPHI D	TRNS CALCIEQUAL CAN ISRPHI D

Überprüfung der Multiplikationsregel im CAS-Menü mit[TRNS]-[6:smplfy]/[A:cExpnd]/[8:collct]:

simplify((A+iB)×(C+iD) (C+Di)(A+Bi)	cExpand((A+iB)×(C+iD) AC-BD+(AD+BC)i	<u>collect((A+iB)×(C+iD)</u> (AD+BC)i+AC-BD
TENSICAL CEQUAL CAN IGREAT D	TRNSICALCIEQUAI CAN IGREAN D	TKNSICAL CIEQUAI AGN IGRAHI D

Während hier **simplify** nicht mehr vereinfacht, erfolgt mit den anderen beiden Befehlen die symbolische Umformung gemäß der Multiplikationsregel!

Wir erinnern uns hier noch einmal an die Voreinstellung im **SET UP** des **CAS**-Menüs (bekanntlich hat jedes Menü seine eigenen modifizierbaren Voreinstellungen, vgl. **SET UP** im **RUN·MAT**-Menü):

<mark>Ansle</mark> Answer Display	Гуре	Rad Complex Norm1
Deglaad		

Angle	:Rad
Answer Type	Complex
DISPIBY	• 140F.WT
Realicnix	

Nun sind wir neugierig auf die symbolische Berechnung des Betrages einer komplexen Zahl z = a + bi:

Mit Hilfe von **[TRNS]-cExpand** wird der **OPTN Abs**-Befehl schließlich symbolisch ausgeführt!

Hinweis:

Der im **RUN·MAT**-Menü vorhandene Befehl **arg** zur numerischen Berechnung des Winkels ist im **CAS**-Menü nicht vorhanden.

Es wird an dieser Stelle daran erinnert, dass die trigonometrische Umkehrfunktion **arctan(b/a)** nur einen Wertebereich von $-\pi/2 < \arctan(b/a) < \pi/2$ besitzt und für Zahlen z = (a,b) im *II. Quadranten* mit $+\pi$ (+180°) und im *III. Quadranten* mit $-\pi$ (-180°) zu korrigieren ist, wie folgende Screenshots im **CAS**-Menü zeigen. Ausgangspunkt sind die komplexen Zahlen 1+i (*I. Quadrant*), -1+i (*II. Quadrant*), -1-i (*III. Quadrant*) und 1-i (*IV. Quadrant*), deren Argument in Altgrad mittels der Befehle **approx** und **tan**⁻¹ (entspricht **arctan**) berechnet werden soll:

Anordnung der Screenshots entsprechend der Lage der Quadranten im Koordinatensystem.

Abschließend wird im **CAS**-Menü die **Eulersche Formel** betrachtet, die eine Umformung von der exponentiellen Darstellung in die trignometrische Darstellung und umgekehrt beschreibt. Dazu gibt es im Untermenü **[TRNS]-[5:TRIG]** die speziellen Befehle **expToTrig** bzw. **trigToExp**:

Eulersche Formel: $cos(\theta) + i sin(\theta) = e^{i\theta}$

Die **Eulersche Formel** kann im **CAS**-Menü auch über die **Taylor-Entwicklung** der beteiligten Formeln nachvollzogen werden, indem man feststellt, dass die Summe der **cos-Reihe** und der mit *i* multiplizierten **sin-Reihe** genau die betrachtete **e-Reihe** ergeben:

taylor(cos X+isin X,X	taylor(cos X,X,5,0)	taylor(i×sin X,X,5,0)	taylor(e(iX),X,5,0)
x ⁵ i+x ⁴ -x ³ i-x ² 120+24 6 2+Xi+1	$\frac{\times^4}{24} \frac{\times^2}{2}$ +1	<mark>X⁵i−X³i</mark> +Xi 120−6+Xi	x ⁵ i+x ⁴ -x ³ i-x ² 120+24-6-2+Xi+1
TENSICAL CEQUALEGN ISRPHILD	TRNSICALCIEQUALEGN (SRPHILD)	TENSICAL CIEQUAL GAN ISEPHI D	TRNSICAL CEQUAL GAN ISRPHIL D

Wir beenden den Einstieg in das symbolische und numerische Rechnen mit komplexen Zahlen, indem wir im **RUN**·**MAT**-Menü die Zahlen $\sqrt{2} + \sqrt{2}i$, $-\sqrt{2} + \sqrt{2}i$, $-\sqrt{2} - \sqrt{2}i$ und $\sqrt{2} - \sqrt{2}i$ betrachten und dabei wie zu Beginn dieses Kapitels wieder im Winkelmodus Altgrad rechnen. Diesmal wurde für das Zahlenformat (Complex Mode) die exponentielle Darstellung im **SET UP** ausgewählt.

Mode Func Type Draw Type Derivative	Comp Y= Connec l Off
Angle :	Des
Coord	reta⊥ On ↓
Deg Radigra	

Voreinstellungen im SET UP des RUN·MAT-Menüs

Die Anordnung der Quadranten gemäß dem Koordinatensystem: exakte Angabe der Winkel im sogenannten Hauptargumentbereich

Berechnungen von Betrag und Argument von $-\sqrt{2} - \sqrt{2}i$ nach Voreinstellung Complex Mode: a+bi:

2

Mode Func Type Draw Type Derivative	Comp Y= Connect Off	
Hngle Domelez Mode Coord Realla-bake**#	Des a+bi On ↓	

Ahs.

Berechnungen des Arguments von $-\sqrt{2} - \sqrt{2}i$ nach Voreinstellung Complex Mode: $re^{\theta}i$:

Winkelangabe $\theta = -135^{\circ} = (135 e^{180i})^{\circ}$ in exponentieller Darstellung!

Beispiel:

Darstellung komplexer Zahlen in der Gaußschen Zahlenebene als Scatter-Plot (= statistische Graphik) Gegeben sind die Zahlen $z_1 = 1 + i$, $z_2 = 2 - 2i$, $z_3 = -3i$, $z_4 = 2 - \sqrt{3} \cdot 2i$, $z_5 = 3.5$, $z_6 = 1 - 5i$.

Lösungsweg:

Die Zahlenliste wird zuerst im **[List]-[Ans]-Speicher** abgelegt. Die Real- und Imaginärteile werden als verbundene Datenlisten **List1** und **List2** eingegeben und über das **STAT**-Menü als statistische Graphik (Scatterplot der Zahlenpaare) entsprechend der nachstehenden Screenshots dargestellt.

Nachdem der STAT-Listen-Editor geöffnet ist, wird über [GRPH]-[5:Set] der Plot StatGraph1 definiert:

Staturaphi S <u>veek Ture (Ceetter</u>	George
X Listen-Nr. wählen	XList
List[1~20]: 2	Freque
	паг к т
IST	

Nun werden über [GRPH]-[4:Select] der Plot StatGraph1 aktiviert (DrawOn) und die TRACE-Taste genutzt:

List List 2 List 3 List 4	StatGraph1 StatGraph2	DrawOn DrawOff		StatGraph1
5:Sel -z 4:Select -a	Staturaphs	:DrawUtt		
2:8-Geh2 0 1:8-Geh1 3,464101615				
GARMCALCIDEL DELAIINS D	On Off	DRAW	TRACEIZOOMSKTCHCALCIDeFGI D	X=2 Y= -3.464101615

Die zwei letzten Plots zeigen die Lage der komplexen Zahlen in der Gaußschen Zahlenebene.

Aufgaben:

- 1.1. Veranschaulichen Sie sich die Zahlenliste $\{i, i^2, i^3, i^4\}$ in der Gaußschen Zahlenebene (Hinweis: Scatterplot).
- 1.2. Vereinfachen Sie die Zahlenliste { i^7 , i^9 , i^{14} } im **RUN·MAT**-Menü. (Hinweis: **[List]-[Ans]**-Speicher nutzen)
- 1.3. Gegeben ist die Zahlenliste { 4-3i, 1+i, $1-\sqrt{3}\cdot i$, 9, -12i }
 - (Hinweis: $\sqrt{3}i$ statt $\sqrt{3} \cdot i$ führt zu einem Eingabefehler, $\sqrt{3}i = \sqrt{(3i)}$).
 - a) Bestimmen Sie die Liste der Realteile und die Liste der Imaginärteile!
 - b) Bestimmen Sie die Liste der Beträge und die Liste der Winkel (Altgrad)!
 - c) Stellen Sie die Zahlen in der Gaußschen Zahlenebene dar (Scatterplot)!
 - d) Bestimmen Sie die Liste der konjugiert komplexen Zahlen!
- 1.4. Gegeben sind die Zahlen $z_1 = 3 + 4i$ und $z_2 = 4 + 3i$. Berechnen Sie im **RUN·MAT**-Menü die Zahlen $z_1 + z_2$, $z_1 \cdot z_2$, $\overline{z_1}$, $\overline{z_2}$, $\overline{z_1} \cdot \overline{z_2}$, $\overline{z_1} \cdot \overline{z_2}$,
- 1.5. Formen Sie die komplexe Zahlenliste { $1+i\sqrt{3}$, 3+4i, -3i } in die exponentielle Form um (Hinweis: im SET UP Complex Mode auf $r e^{h}$ einstellen).
- Formen Sie z = 9·(cos 330° + i sin 330°) in die arithmetische Darstellung und exponentielle Darstellung um (Hinweis: ►a+bi bzw. ►re^θi im [OPTN]-[CLPX]-Untermenü des RUN·MAT-Menüs nutzen!)
- 1.7. a) Ermitteln Sie die Polarkoordinaten von z=3+4i! (Hinweis: Pol(Befehl im [OPTN]-[ANGL]-Untermenü des RUN·MAT-Menüs nutzen!)
 - b) Ermitteln Sie zu z = 5·e^(iπ/3) die kartesischen Koordinaten (Bogenmaß beachten!) (Hinweis: Rec(- Befehl im [OPTN]-[ANGL]-Untermenü des RUN·MAT-Menüs nutzen!)
- 1.8. Gegeben sind $z = \cos X + i \cdot \sin X$ und $\overline{z} = \cos X i \cdot \sin X$. Zeigen Sie im CAS-Menü die Gleichung $z \cdot \overline{z} = 1$ (Hinweis: Simplify-Befehl nutzen!)
- 1.9. Gegeben sind $z_1 = 2 + 2i$ und $z_2 = 3 \cdot (\cos(3\pi/4) + i \sin(3\pi/4))$. Berechnen Sie $z_1 + z_2$ sowie $z_1 \cdot z_2$.

Herleitung der Umkehroperationen zu "+" und "•" (Subtraktion und Division)

Zunächst werden die "Null" und "Eins" als komplexe Zahlen *a+bi* wie folgt definiert:

Für jede Zahl x+yi gilt: $(x+yi) + "Null" = x+yi \iff "Null" = 0+0i = (0,0)$

Für jede Zahl $x+yi \neq$ "Null" gilt: $(x+yi) \cdot$ "Eins" = $x+yi \Leftrightarrow$ "Eins" = 1+0i = (1,0)

Die spezielle Gestalt der Null ergibt sich aus der Additionsregel, die der Eins aus der Multiplikationsregel für komplexe Zahlen, vgl. Kapitel 1.

Die Subtraktion als Umkehroperation zur Addition kann nun so definiert werden, dass

(x+yi) - (a+bi) = (x+yi) + "Inverse zu a+bi bei Addition"

gelten soll, wobei "Inverse zu a+bi bei Addition" diejenige komplexe Zahl bedeutet, für die gilt:

(a+bi) + "Inverse zu a+bi bei Addition"= "Null"=0+0i \Leftrightarrow "Inverse zu a+bi bei Addition"= (-a -bi) = (-a, -b)

Damit ergibt sich die bekannte Rechenregel (x+yi) - (a+bi) = (x+yi) + (-a -bi), die unmittelbar in **CAS**-Menü mit dem Befehl **F1**[**TRNS**]-[A:cExpnd] nachvollzogen werden

kann: <u>CEzpand((X+Yi)-(A+Bi)</u> X-A+(Y-B)i

Subtraktion im **RUN·MAT**-Menü: (Zahlendarstellung mit Nachkommastellen - exakte Zahlendarstellung im **CAS**-Menü)

(3+4i)-(2-5i) (2-4i)-(2×e(iπ/3) 1-5.732050808)	Ĺ
	٦

Die nachfolgenden Screenshots zeigen verschiedene Lösungsdarstellungen ein und derselben Subtraktionsaufgabe im **CAS**-Menü:

(2-4i)-(2×e(iπ/3)	
$a(\sqrt{3}i, 1), a_{i}$	
-2(-2+2)+2-41	
TRNSICAL CEQUAL AND ISPENDED	

Entsprechend kann man nun die Division durch den Divisor $a+bi \neq 0+0i$ aus der Multiplikationsregel und dem Vorhandensein der "**Eins** " ableiten:

 $(x+yi):(a+bi) = (x+yi) \cdot$ "Inverse zu a+bi bei Multiplikation"

soll gelten, wobei "Inverse zu a+bi bei Multiplikation" diejenige komplexe Zahl bedeutet, für die gilt:

 $(a+bi) \cdot$ "Inverse zu a+bi bei Multiplikation "= "Eins" = 1+0*i* \Leftrightarrow "Inverse zu a+bi bei Multiplikation" = $a/(a^2+b^2) + i(-b)/(a^2+b^2)$

Wir ermitteln die zuletzt genannte Darstellung der **Inversen** zu a+bi bei Multiplikation im **CAS**-Menü, indem wir ein lineares Gleichungssystem symbolisch lösen. Es sei v+widie **Inverse** zu a+bi bei Multiplikation, vgl. Kapitel 1.

Dann gilt:

Nach der Multiplikationsregel bedeutet das:

d.h. mit der Gleichheitseigenschaft

Wir lösen das Gleichungssystem mit im **CAS**-Menü:

 $(a+bi) \cdot (v+wi) = 1+0i$.

(av-bw) + (aw+bv)i = 1+0i, av-bw = 1 upd aw+bv = 0

$$av - bw = 1$$
 und $aw + bv = 0$.

$$solve({av-bw = 1, aw+bv = 0}, {v,w})$$

Das letzte Bild verdeutlicht, dass das Multiplikationszeichen zwischen den symbolischen Variablen A, B, V und W weggelassen werden kann.

Damit ergibt sich die bekannte Rechenregel

$(x+yi):(a+bi) = (x+yi) \cdot (a/(a^2+b^2)+i(-b)/(a^2+b^2)) = (xa+yb+(ya-xb)i)/(a^2+b^2),$

die unmittelbar in **CAS**-Menü mit dem Befehl **F1**[**TRNS**]-[**A:cExpnd**] nachvollzogen werden kann. Das letzte Bild zeigt wieder eine Rechnung im **RUN·MAT**-Menü:

$\frac{CEzpand((X+Yi)/(A+Bi))}{AX} + \frac{BV}{A^2} + \left[\frac{AV}{A^2} + \frac{BV}{A^2} + \left[\frac{AV}{A^2} + \frac{BV}{A^2} + BV$	$\frac{E_{XPand}((X+Yi)/(A+Bi)}{B_{Y}^{2}+B_{Z}^{2}} + \left(\frac{B_{Y}}{B_{Z}^{2}+B_{Z}^{2}} - \frac{B_{X}}{B_{Z}^{2}+B_{Z}^{2}}\right)i$	(2+3i)/(5+6i) 28,3i 61 61	(2+3i)/Conjs (5+6i) -0.131147541 +0.4426229508i (2+3i)/(5-6i)
CLRISWIRANSI DI		TRNSICALCIEQUALEAN ISRPHILD	-0.131147541 +0.4426229508i LISTIMATICPLXICALGNUMI D

Zur Kontrolle berechnen wir das Produkt mit dem "Inversen" des Divisors symbolisch:

$ \frac{(X+Yi)(A/(A^2+B^2)-Bi)}{\left(\frac{A}{R^2+B^2}-\frac{Bi}{R^2+B^2}\right)(X+Yi)} $	$ \frac{2+B^{2})-Bi/(A^{2}+B^{2})}{\left(\frac{B}{A^{2}+B^{2}}-\frac{Bi}{A^{2}+B^{2}}\right)(X+Yi)} $	$\frac{CExpand(X+Y1)(R/(R^2))}{R^2} + \frac{B^2}{R^2} + \frac{B^2}{R^2} + \left(\frac{R^2}{R^2} - \frac{R^2}{R^2}\right)$	simplify(cEzpand((A/(<u>AX+AYi-BXi+BY</u> A ² +B ²
CLR SW RANS D	CLR SW RANS	TRNSICAL CIEQUAL GAN IGRPHI D	TRNSICAL CIEQUAL EGN IGRPHI D

Das letzte Bild zeigte hier die Möglichkeit, Befehle zu schachteln: simplify(cExpand(... .

simplify((X+Yi)(A/(A^	factor(simplify((X+Yi	Interessante Darstellungen ergeben sich
(A-Bi)(X+Yi)	(A-Bi)(X+Yi)	mit dem Befehl simplify(bzw. geschach-
A ² +B ²	(-Ai+B)(Ai+B)	telt factor(simplify((Erweiterung mit der
TRNSICALCEQUALERN ISRPHI D	TRNSICAL CIEQUAL GAN IGRPHI D	konjugiert komplexen Zahl $\ a{-}bi$)

Der aufmerksame Leser wird die Faktorisierung $a^2+b^2=(-ai+b)(ai+b)$ festgestellt haben (im letzten Screenshot). Damit erhält man im **CAS**-Menü eine interessante Formelstruktur:

$$(a+bi)(a-bi) = a^2+b^2 = (-i)(a+bi)\cdot i(a-bi) = (-ai+b)(ai+b)$$

factor(A^2+B^2) (-Ai+B)(Ai+B)	((A+Bi)(A-Bi))/((-A×) (A-Bi)(A+Bi) (-Ai+B)(Ai+B)	$\frac{1}{B^2} + \frac{B^2}{B^2 + B^2}$	simplify(cEzpand(((A+ 1
TRNSICAL CIEQUAI GAN ISRPHI D	CLR SW RANS D	TRNSICAL CIEQUAI GAN IGRPHI D	TKNS ICALCIEQUAI EGN ISRPHI D

Die Screenshots im **CAS**-Menü verdeutlichen die oben dargelegten Gleichungen.

Beispiele: 17 = 1+16 = (1-4i)(1+4i) = (4-i)(4+i) oder $x^2+y^2 = (x+iy)(x-iy) = (y-ix)(y+ix)$.

Aufgaben:

- 2.1. Gegeben sind die Zahlen $z_1 = 1 i$, $z_2 = 1/2 + i\sqrt{3}/2$ und $z_3 = -1 i$
 - a) Berechnen Sie $z_4 = z_1^2 \cdot z_3 / z_2^3$ und $z_5 = (z_1 + i) \cdot z_2^2 / z_3$.
 - b) Stellen Sie z_4 und z_5 in trigonometrischer und arithmetischer Form dar (Altgrad)!
- 2.2. Berechnen Sie für die Zahlen $z_1 = 3 + 4i$ und $z_2 = 4 + 3i$ die Zahlen $z_1 z_2$, $1/(z_1 z_2)$, z_1/z_2 , $\overline{z}_1/\overline{z}_2$, sowie die konjugiert komplexe Zahl zu $\overline{z}_1/\overline{z}_2$.
- 2.3. Berechnen Sie möglichst vorteilhaft folgende Zahlen in arithmetischer und exponentieller Darstellung { $(1+i)/(-1+i)^2$, (3+4i)/5 + 5/(3+4i), $(1+i)^2$, $(1+2i)^2 \cdot (1+i)^2/(1-i)^2$ }.
- 2.4. Berechnen Sie im RUN·MAT-Menü
 - a) z_1/\overline{z}_1 für $z_1 = \sqrt{3} + i\sqrt{2}$
 - b) z_1/z_2 für $z_1 = 4$ und $z_2 = 4 \cdot (\cos 30^\circ + i \sin 30^\circ)$
- 2.5. Berechnen Sie die Zahl A·B/C sowie den Betrag $|A \cdot B/C|$ für die Zahlen $A = \sqrt{2} \cdot (\cos(7\pi/4) + i \sin(7\pi/4)), B = 1 \cdot (\cos(\pi/3) + i \sin(\pi/3))$ sowie $C = \sqrt{2} \cdot (\cos(5\pi/4) + i \sin(5\pi/4))$ im CAS-Menü.
- 2.6. Für welche reellen Faktoren *a* und *b* ergibt die Linearkombination az_1+bz_2 mit $z_1 = 2 + 3i$ und $z_2 = 1 + 2i$ die Zahl z = 1 4i? (Hinweis: Trennen Sie in der Gleichung $az_1+bz_2 = z$ den Real- und Imaginärteil und lösen Sie das entstehende Gleichungssystem in geeigneter Form.)
- 2.7. Berechnen Sie die Zahl $z = (-2+2\sqrt{3}\cdot i)/(2+\sqrt{5}\cdot i) 5\cdot(\sqrt{3}+i)/(2\sqrt{5}+5i)$ in arithmetischer und exponentieller Darstellung und geben Sie die Ergebnisse sowohl in exakter als auch näherungsweiser Darstellung auf 4 Nachkommastellen gerundet an (Winkel in Altgrad angeben).
- 2.8. Lösen Sie das komplexe lineare Gleichungssystem durch elementare Umformungen (Eliminationsverfahren): $3z_1 (2+i) \cdot z_2 = -i$, $(4 2i) \cdot z_1 5z_2 = -1 2i$.

Die Potenz z^{N} einer komplexen Basis z

Was den Schüler hier besonders interessiert:

Wie erkennt man bei gleichen Potenzwerten z^{N} von welcher Basis z ausgegangen wurde?

Im **RUN**·**MAT**-Menü wurden die komplexen Zahlen 1 + i, 1 - i, -1 - i oder -1 + i in die vierte Potenz genommen und jedesmal erhält man die gleiche scheinbar reelle Zahl -4.

Man müßte jeder ursprünglichen komplexen Zahl 1 + i, 1 - i, -1 - i oder -1 + i einen Index k zuordnen und diesen dann auch dem Ergebnis -4 beifügen, indem man sagt, dass es sich um die komplexe Zahl -4 im k-ten "Exemplar" einer Gaußschen Zahlenebene der Potenzwerte handelt. Eine solche Zahlenebene wird als Blatt mit der Blattnummer k bezeichnet.

Das sieht so aus (Reihenfolge im mathematisch positiven Drehsinn - Gegenuhrzeigersinn)

$$z_0 = 1 + i$$
, $z_1 = -1 + i$, $z_2 = -1 - i$ oder $z_3 = 1 - i$

und dann sagt man

 $(\underline{ })$

einer 4-blättrigen RIEMANNschen Fläche (Gaußsche Zahlenebene in vier Exemplaren).

Allgemein gilt:

Es gibt für die feste Zahl $w = z^{N}$ insgesamt *N* Zahlen z_{k} , k=0, 1, 2, ..., N-1, mit $z_{k}^{N} = w$. Dabei liegt z_{k} im sogenannten **Winkelraum D**_k der ursprünglichen Gaußschen Zahlenebene der *z*-Werte. Der Potenzwert $w = z_{k}^{N}$ liegt dann im sogenannten **Blatt** k der *N*-blättrigen **RIEMANNschen Fläche**.

Der **Winkelraum D**₀ liegt dabei symmetrisch um die positive x-Achse und hat bei Betrachtung der Potenz z^{N} die Winkelöffnung $2\pi/N$, d.h.

$$D_0 = \{ z \mid -\pi / N < arg(z) \leq \pi / N \}.$$

Für $\mathbf{D}_{\mathbf{k}}$ gilt, indem man den Winkelraum $\mathbf{D}_{\mathbf{0}}$ im mathematisch positven Drehsinn um $\mathbf{P}(\mathbf{0},\mathbf{0})$ dreht,

$$\mathbf{D}_{k} = \{ z \mid (-\pi + 2k\pi) / N < \arg(z) \leq (\pi + 2k\pi) / N \}, k = 1, 2, ..., N - 1.$$

Hierbei bezeichnet $\arg(z) = \theta$ mit $-\pi < \theta \le \pi$ das DIN-gerechte Hauptargument der Zahl z.

Die vier Winkelräume des oben erwähnten Beispiels haben folgendes graphische Aussehen, das unschwer über das **GRPH** ·**TBL**-Menü zu erhalten ist:

Der Winkelraum D_0 im Fall N= 4 in symmetrischer Lage um die positve x-Achse

Für alle komplexen Zahlen z im Winkelraum D_0 gilt also: $-\pi/4 < \theta = \arg(z) \le \pi/4$, d.h.

Der Winkelraum D_1 im Fall N= 4 in symmetrischer Lage um die positve y-Achse

Für alle komplexen Zahlen z im Winkelraum **D**₁ gilt also: $\pi/4 < \theta = \arg(z) \le 3\pi/4$, d.h.

© CASIO Europe GmbH Norderstedt

Für alle komplexen Zahlen z im Winkelraum D_2 gilt somit: $3\pi/4 < \theta = \arg(z) \le 5\pi/4$, d.h.

Schließlich gilt für alle komplexen Zahlen z im Winkelraum D_3 : $5\pi/4 < \theta = \arg(z) \le 7\pi/4$:

Es gilt zusammenfassend (wenn man sich die z-Ebene wie einen runden "Kuchen" in N gleichgroße "Kuchenstücke" zerlegt vorstellt und jedes "Kuchenstück" einen Winkelraum beschreibt):

Alle *z*-Werte aus dem Winkelraum D_k in der *z*-Ebene gehen über in die Potenzwerte z^N im Blatt *k*.

Damit wird die eindeutige Aussage möglich:

Betrachtet man die (komplexe) **Zahl** w = -4 im Blatt 1, kurz w = (-4, Blatt 1), dann handelt es sich z.B. um die Potenz z^N mit N = 4 und $z = z_1 = -1 + i \in D_1$ (Winkelraum D_1).

Nun soll die praktische Berechnung der Potenz z^{N} mit N = 4 dargestellt werden.

In arithmetischer Darstellung $z = x + y \cdot i$ erhält man im **CAS**-Menü entsprechend dem Binomischen Satz:

$$(x + y \cdot i)^{4} = x^{4} + 4x^{3}y \cdot i - 6x^{2}y^{2} - 4xy^{3} \cdot i + y^{4}$$

$$(x + y \cdot i)^{4} = x^{4} + 4x^{3}y \cdot i - 6x^{2}y^{2} - 4xy^{3} \cdot i + y^{4}$$

$$(x + y \cdot i)^{4} = x^{4} + 4x^{3}y \cdot i - 6x^{2}y^{2} - 4xy^{3} \cdot i + y^{4}$$

$$(x + y \cdot i)^{4} = x^{4} + 4x^{3}y \cdot i - 6x^{2}y^{2} - 4xy^{3} \cdot i + y^{4}$$

$$(x + y \cdot i)^{4} = x^{4} + 4x^{3}y \cdot i - 6x^{2}y^{2} - 4xy^{3} \cdot i + y^{4}$$

$$(x + y \cdot i)^{4} = x^{4} + 4x^{3}y \cdot i - 6x^{2}y^{2} - 4xy^{3} \cdot i + y^{4}$$

$$(x + y \cdot i)^{4} = x^{4} + 4x^{3}y \cdot i - 6x^{2}y^{2} - 4xy^{3} \cdot i + y^{4}$$

$$(x + y \cdot i)^{4} = x^{4} + 4x^{3}y \cdot i - 6x^{2}y^{2} - 4xy^{3} \cdot i + y^{4}$$

$$(x + y \cdot i)^{4} = x^{4} + 4x^{3}y \cdot i - 6x^{2}y^{2} - 4xy^{3} \cdot i + y^{4}$$

$$(x + y \cdot i)^{4} = x^{4} + 4x^{3}y \cdot i - 6x^{2}y^{2} - 4xy^{3} \cdot i + y^{4}$$

$$(x + y \cdot i)^{4} = x^{4} + 4x^{3}y \cdot i - 6x^{2}y^{2} - 4xy^{3} \cdot i + y^{4}$$

$$(x + y \cdot i)^{4} = x^{4} + 4x^{3}y \cdot i - 6x^{2}y^{2} - 4xy^{3} \cdot i + y^{4}$$

$$(x + y \cdot i)^{4} = x^{4} + 4x^{3}y \cdot i - 6x^{2}y^{2} - 4xy^{3} \cdot i + y^{4}$$

Wird die Zahl $z = 1 + 1 \cdot i = 1 + i$ potenziert, erhält man für z^N mit beliebigem N im CAS-Menü entsprechend dem Satz von Moivre

$$z^{\mathsf{N}} = \left(|z| e^{i \cdot \arg(z)} \right)^{\mathsf{N}} = |z|^{\mathsf{N}} e^{i \cdot \arg(z) \cdot \mathsf{N}} = |z|^{\mathsf{N}} \left(\cos(\arg(z) \cdot N) + i \cdot \sin(\arg(z) \cdot N) \right)$$

Abschließend wird die Potenz $(x + y \cdot i)^N$ mit beliebigem z und N im **CAS**-Menü wie folgt berechnet (Vorzeichenfunktion: signum(y) = sgn(y) = y / |y| für $y \neq 0$, vgl. Kapitel 7):

$$(x+y\cdot i)^{N} = (x^{2}+y^{2})^{N/2} \left(\cos\left\{(-\arctan(x/y)+\pi/2 \cdot \operatorname{sgn}(y))\cdot N\right\} + i \cdot \sin\left\{(-\arctan(x/y)+\pi/2 \cdot \operatorname{sgn}(y))\cdot N\right\}\right)$$

Man erkennt hierbei, dass die allgemeine Potenz z^{N} über die trigonometrische Darstellung mit dem Hauptargument

 $\arg(z) = \theta = -\arctan(x/y) + \pi/2 \cdot \operatorname{sgn}(y)$

berechnet wird.

Wegen des Additionstheorems

 $\arctan(x/y) + \arctan(y/x) = \pi/2$ für x/y > 0

erkennt man unschwer, dass im I. Quadranten gilt:

 $\arg(z) = \theta = -\arctan(x/y) + \pi/2 \cdot \operatorname{sgn}(y) = \arctan(y/x)$

und im III. Quadranten:

 $\arg(z) = \theta = -\arctan(x/y) + \pi/2 \cdot \operatorname{sgn}(y) = \arctan(y/x) - \pi$.

Wegen des Additionstheorems

arctan(
$$x/y$$
) + arctan(y/x) = - $\pi/2$ für $x/y < 0$

erkennt man auch unschwer, dass im II. Quadranten gilt:

$$\arg(z) = \theta = -\arctan(x/y) + \pi/2 \cdot \operatorname{sgn}(y) = \arctan(y/x) + \pi$$

und im IV. Quadranten:

$$\arg(z) = \theta = -\arctan(x/y) + \pi/2 \cdot \operatorname{sgn}(y) = \arctan(y/x)$$
.

Damit ist die im **CAS**-Menü angezeigte Formel eine interessante Darstellung mit Gültigkeit in jedem Quadranten (außerhalb der reellen Achse) und entspricht den von der Schule her bekannten Formeln.

Aufgaben:

- 3.1. Gegeben ist die Zahl z = -2 + 5i. Zu berechnen ist z^2 . In welchem Winkelraum D_k liegt z und in welchem Blatt k liegt demzufolge die Potenz $w = z^2$?
- 3.2. Gegeben sind die Zahlen $z_1 = 3^{1/2} + i$ und $z_2 = -3^{1/2} + i$. Zu berechnen ist z^3 . In welchem Winkelraum \mathbf{D}_k liegen z_1 bzw. z_2 und in welchem Blatt k liegen demzufolge die Potenzen $w = z^3$ für $z = z_1$ bzw. $z = z_2$?
- 3.3. Gegeben sind die Zahlen $z_1 = 2i$, $z_2 = -1 + 2i$ und $z_3 = -1 2i$. Zu berechnen ist z^4 . In welchem Winkelraum D_k liegen z_1 , z_2 bzw. z_3 und in welchem Blatt k liegen demzufolge die Potenzen $w = z^3$ für $z = z_1$, $z = z_2$ bzw. $z = z_3$?
- 3.4. Gegeben ist $z = -1 i 3^{1/2}$.
 - a) Berechnen Sie z^7 . In welchem der Winkelräume D_0 bis D_6 liegt die Zahl z (Index k)? b) In welchem Blatt k (der 7-blättrigen Riemannschen Fläche) liegt der Wert $w = z^7$?
- 3.5. Gegeben ist die komplexe Zahl $z = 11/10 \cdot e^{(i\pi/10)}$. Stellen Sie die Potenzen z^N , N = 1, 2, ..., 20, als Scatterplot (= statistische Graphik) in der x-y-Ebene dar und gebon

hen

- Sie dabei wie folgt vor:
- a) Abspeicherung von z im **RUN·MAT**-Menü (Variablenname **Z**).
- b) Re(z^N) bzw. Im(z^N) als Zahlenfolge in List1 bzw. List2 abspeichern.
 (Hinweis: Seq-Befehl im Untermenü [OPTN]-[LIST] nutzen.)
- c) Das Scatterplot als **StatGraph1** im **STAT**-Menü definieren (über **GRPH-Set**) und über **GRPH-Select** darstellen.
- 3.6. Untersuchen Sie die komplexe Zahl $z = 11/10 \cdot e^{i\pi/10}$ im CAS-Menü.
 - a) Speichern Sie z ab (Variablenname **Z**) und geben Sie z in exakter arithmetischer Darstellung sowie in gerundeter arithmetischer Form (3 Nachkommastellen) an.
 - b) Berechnen Sie z^5 und vereinfachen Sie das Ergebnis. Wie lautet das Ergebnis in exakter arithmetischer Darstellung? (Hinweis: Untersuchen Sie im **CAS**-Menü die Umformung (e^($i\pi/10$))^5 = e^($i\pi/2$) und beachten Sie die Potenzgesetze.)

Die Potenz e^z mit einem komplexen Exponenten z

Was den Schüler hier besonders interessiert:

Warum ist die komplexe e-Funktion eine periodische Funktion?

In Verallgemeinerung der Eulerschen Formel $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ gilt:

$$\mathbf{e}^{z} = \mathbf{e}^{x+iy} = \mathbf{e}^{x} \cdot \mathbf{e}^{iy} = \mathbf{e}^{x} \cdot (\cos(y) + i\sin(y))$$

Dies kann man sofort im CAS-Menü nachprüfen:

<u>cEzpand(e(X+Yi))</u> &^X·cos(Y)+&^X·sin(Y)·i

TRNSICALCIEQUAL EAR MARPH D Die Potenz e^{z} als Exponential funktion von z = x + iy.

Wegen der Periodizität der trigonometrischen Funktionen sin(y) und cos(y) gilt damit für unterschiedliche z-Werte, z.B. z = 1 + i, $z = 1 + i + 2\pi i$, $z = 1 + i - 8\pi i$, das gleiche Ergebnis:

Das Ergebnis $e^1 \cdot e^i = 2,718281828 \cdot e^i$ im **RUN** · **MAT**-Menü

Es ist ersichtlich, dass unterschiedliche *z*-Werte, die sich im Imaginärteil um ein *k*-faches von 2 π unterscheiden (*k* ganzzahlig), stets die gleiche **e**-Potenz haben. Man sagt deshalb:

Die komplexe **e**-Funktion $w = e^{z}$ ist mit $2\pi i$ periodisch.

Um gleiche Ergebnisse $w = e^{1+i} = e^{1+i+2\pi i} = e^{1+i-8\pi i}$ hinsichtlich ihrer Herkunft eindeutig zuordnen zu können, betrachtet man wieder wie im Kapitel 3 jedes Ergebnis in einer anderen gedachten Gaußschen Zahlenebene und sagt:

$$w_0 = \mathbf{e}^{1+i} = \mathbf{e}^{1+i+0\cdot 2\pi i} = \mathbf{e}^1 \cdot \mathbf{e}^i \text{ liegt im Blatt 0,}$$

$$w_1 = \mathbf{e}^{1+i+2\pi i} = \mathbf{e}^{1+i+1\cdot 2\pi i} = \mathbf{e}^1 \cdot \mathbf{e}^i \text{ liegt im Blatt 1,}$$

$$w_2 = \mathbf{e}^{1+i-8\pi i} = \mathbf{e}^{1+i-4\cdot 2\pi i} = \mathbf{e}^1 \cdot \mathbf{e}^i \text{ liegt im Blatt -4}$$

einer unendlich-blättrigen Riemannschen Fläche.

Unter Beachtung der Periodizität gilt allgemein: $w = e^{z}$ liegt genau dann im Blatt k, wenn für den Imaginärteil die Ungleichung $-\pi + k \cdot 2\pi < \text{Im}(z) \le \pi + k \cdot 2\pi$ (k ganzzahlig) gilt.

In diesem Zusammenhang spricht man auch vom k-ten Parallelstreifen D_k innerhalb der Gaußschen z-Ebene:

$$\mathbf{D}_{k} = \{ z \mid -\pi + k \cdot 2\pi < \operatorname{Im}(z) \leq \pi + k \cdot 2\pi \}, k = ..., -2, -1, 0, 1, 2, ... \}$$

Im GRPH ·TBL-Menü kann man diese Parallelstreifen wieder unschwer darstellen:

Der Parallelstreifen **D**₀ liegt hierbei genau wie der Winkelraum **D**₀ symmetrisch um die x-Achse.

Beispiel:

Im welchem Blatt der Riemannschen Fläche liegen die **e**-Funktionswerte $w = e^{z}$ für die komplexen Zahlen $z = z_1 = 2 + 5 \cdot i$, $z = z_2 = 2 - 3 \cdot i$, $z = z_3 = 2 - 6 \cdot i$ und $z = z_4 = 2 + 11 \cdot i$? Geben Sie jeweils die *w*-Werte an! Hinweis zur Wahl des Zahlensystems ("Mode"): Wählen Sie in der Einstellanzeige (SET UP) für "Mode" unbedingt "Comp"!

Wir lösen die Aufgabe wie folgt:

Über die (reellen) Imaginärteile 5, -3, -6 und 11 wird der Index k des Parallelstreifens für den jeweiligen z-Wert ermittelt. Dieser Index ist dann unmittelbar die gesuchte Blattnummer k. Dazu werden die Intervallgrenzen der Parallelstreifen als Zahlenfolgen im **RUN·MAT**-Menü erzeugt und dann im **STAT**-Menü betrachtet. Der Index k ist dann unmittelbar ersichtlich!

Abschließend werden die Potenzwerte $w = e^{z}$ berechnet und die Endergebnisse angegeben:

Im SET UP des RUN·MAT-Menüs wird zuerst die arithmetische Zahlendarstellung (Complex Mode: a+bi) voreingestellt. Dann werden die vier Zahlen als Datenliste $\{2+5\cdot i, 2-3\cdot i, 2-6\cdot i, 2+11\cdot i\}$ ohne Speicherbefehl eingegeben und mittels E im List-Ans-Speicher abgelegt und angezeigt:

Nun werden im **SET-UP** des **RUN·MAT**-Menüs die exponentielle Zahlendarstellung sowie vier Nachkommastellen voreingestellt. Im Exponenten der **e**-Funktion kann sofort die **List-Ans**-Liste eingegeben werden:

Mode Func Type Draw Type Derivative Angle Complex Nod e	ComP Y= Plot Off Rad re*81	Ansle Complex M Coord Grid Axes Label	Rad 1ode re^ði On Off On Off	Ť	(2+5i,2-3i,2-6i,2+11i) Done e(List Ans)
LOOPC Realla•baire*#a	∶un ↓	<u>Display</u> Fix Sci No	F 1 24 rm EnS		

Für die Werte $w = e^{z}$ erhält man folgende interessanten Ergebnisse, die einer Interpretation bedürfen:

₩n.5	én.\$	₩n\$	₩n.\$
[]	[™. 389>)	1 [¶. 309>	1 [¶. 389>]
2 1.389>	2 [74:800]	2 1. 309 >	2 ¶. 389>
3 1.389>	3 [%. 389>	3 (JECCE)	3 ¶. 389>
4 1.389>]	4 [%. 389>]	4 [1. 309>]	4.[₩E100]
7.3891 6-1. 2832i	7.3891 6- 3.0000i	7.3891 6 0.2832i	7.3891 6-1. 5664i

Alle *w*-Werte haben den gleichen Radius $r = e^x = e^2 = 7,3891$, jedoch nur w_2 hat seinen ursprünglichen Winkel $\theta = -3$ (im Bogenmaß) behalten! In allen anderen Fällen wurde der Winkel $\theta = y$ in das DIN-gerechte Hauptargument umgeformt, für das $-\pi < \theta \le \pi$ festgelegt ist. Damit wird das Ergebnis verständlich:

Aufgaben:

- 4.1. Gegeben ist die Zahl z = A + Bi. Im CAS-Menü sind der Betrag sowie der Realteil und Imaginärteil von e^{z} symbolisch darzustellen! Wie lautet das Hauptargument von e^{z} ?
- 4.2. Gegeben sind die Zahlen $z_1 = 3^{1/2} + 5i$ und $z_2 = -3^{1/2} 5i$.
 - a) Zu berechnen ist e^{z} für $z = z_1$ bzw. $z = z_2$.
 - b) Geben Sie für das Ergebnis w jeweils den Betrag und das Hauptargument an!
 - c) In welchem Parallelstreifen $\mathbf{D}_{\mathbf{k}}$ liegen z_1 bzw. z_2 und in welchem Blatt k liegen demzufolge die Potenzen $w = \mathbf{e}^z$ für $z = z_1$ bzw. $z = z_2$?
- 4.3. Gegeben sind die Zahlen $z_1 = 20 + 20i$, $z_2 = 10 + 10i$ und $z_3 = -40 40i$.
 - a) Zu berechnen ist e^{z} für $z = z_1$, $z = z_2$ bzw. $z = z_3$.
 - b) Geben Sie jeweils die konjugiert komplexe Zahl zu e^{z} sowie **Re** (e^{z}) und **Im** (e^{z}) an.
 - c) In welchem Parallelstreifen $\mathbf{D}_{\mathbf{k}}$ liegen z_1 , z_2 bzw. z_3 und in welchem Blatt k liegen demzufolge die Potenzen $w = \mathbf{e}^z$ für $z = z_1$, $z = z_2$ bzw. $z = z_3$?
- 4.4. Stellen Sie die Ergebnisse in 4.3.a) in einer Gaußschen Zahlenebene (Scatterplot) dar!

Die N-te Wurzel einer komplexen Zahl *z* (Haupt- und Nebenwurzeln)

Was den Schüler hier besonders interessiert:

Warum ist -2 nicht die komplexe Hauptwurzel der Aufgabe $\sqrt[3]{(-8)} = (-8)^{1/3}$?

Warum erhält man für die Aufgabe (-8)^{1/3} im Real-Modus bzw. Complex-Modus unterschiedliche Ergebnisse?

Warum erhält man beim Wurzelziehen im Komplexen mit dem Taschenrechner stets nur Zahlen im I. oder IV. Quadranten? Auf diese Frage kommen wir weiter unten zurück.

Es scheint so, als ob der Taschenrechner eigenwillig ist und nicht vorhersehbare Ergebnisse liefert. Dem ist nicht so! Einblicke in die algebraischen Formelstrukturen geben hier eine klare Antwort zum Wurzelziehen.

Vorab der Hinweis:

Man geht diesem Ärger aus dem Wege, wenn man die Wurzel $w = \sqrt[N]{z}$ als Potenz $z^{1/N}$ interpretiert und im Bereich der reellen Zahlen keine negativen Basen bei gebrochenem Exponenten zuläßt.

In vielen Formelsammlungen findet man genau diesen Hinweis: In der allgemeinen reellen Potenz a^b ist nur dann eine negative Basis zugelassen, wenn der Exponent ganzzahlig ist!

Somit vermeidet man im **Real**-Modus die negative Basis und hat nicht den folgenden Ärger, z.B. im **CAS**-Menü:

Versucht man jedoch trotzdem, im **Real**-Modus mit einer negativen Basis und einem gebrochenem Exponenten zu rechnen, dann ist das negative reelle Ergebnis (wenn es scheinbar ein solches gibt) aus Sicht der komplexen Zahlen **stets nur eine Nebenwurzel** und niemals eine Hauptwurzel bzw. ein Hauptwert der Potenz $z^{1/N}$. Für die N-te Wurzel aus einer komplexen Zahl gilt folgende bekannte Formel:

$$w = \sqrt[N]{z} = \sqrt[N]{|z|} \cdot \exp\{i(\arg(z) + k \cdot 2\pi)/N\}, k = 0, 1, 2, ..., N-1.$$

Im Fall k = 0 erhält man die sogenannte Hauptwurzel $w = w_0$:

$$w_0 = \sqrt[N]{|z|} \cdot \exp\left\{i \arg(z)/N\right\}$$

und im Fall k = 1, 2, ..., N-1 die sogenannten Nebenwurzeln $w = w_k$:

$$w_{\mathbf{k}} = \sqrt[\mathbf{N}]{|z|} \cdot \exp\left\{i\left(\arg(z) + k \cdot 2\pi\right)/\mathbf{N}\right\}.$$

Diese Formeln sind dann eindeutig, wenn für arg(z) stets das DIN-gerechte Hauptargument eingesetzt wird, für das gilt:

$$-\pi < \theta = \arg(z) \le \pi$$

Im Taschenrechner **ALGEBRA FX 2.0** sind genau diese Formeln programmiert unter Beachtung des Hauptarguments und der Hauptwurzel. Wir sehen uns das im **CAS**-Menü an:

cEzpand((X+iY)^(1/N)) cExpand((X+iY)^(1/h) cExpand((X+iY)^(1/N))	cExpand((X+iY)^(1/N))
$\left(-\tan\left(\frac{X}{V}\right)+\frac{\pi\cdot s}{2}\right)$	$\frac{1}{2}$ (2.2) $\frac{1}{2N}$	$\left[-t_{an^{-1}}\left(\frac{X}{Y}\right)+\frac{\pi\cdot sign}{2}\right]$	$\frac{i \operatorname{snum}(Y)}{2}$ $(2, 2) \frac{1}{2N}$
cos(4] · (X ² +Y ²) i
CLR SW RANS		CLR SW RANS D	CLR SW IRANS D

Wir erkennen hier für w_0 die gleiche Formelstruktur wie im Kapitel 3 auf S. 19, wenn man wie dort ausgeführt beachtet, dass $\arg(z) = -\arctan(x/y) + \pi/2 \cdot \operatorname{sgn}(y)$ und $|z| = (x^2 + y^2)^{1/2}$ gilt und der Exponent N durch seinen Kehrwert 1/N ersetzt wird:

$$w_{0} = (x + y \cdot i)^{1/N} = (x^{2} + y^{2})^{1/(2N)} (\cos\{(-\arctan(x/y) + \pi/2 \cdot \operatorname{sgn}(y))/N\} + i \cdot \sin\{(-\arctan(x/y) + \pi/2 \cdot \operatorname{sgn}(y))/N\})$$

Jetzt soll die **N**-te Wurzel einer komplexen Zahl in trigonometrischer Darstellung untersucht werden. Im **CAS**-Menü erhält man dazu für w_n folgende Formelstruktur:

$\frac{cEzPand((re(i0))^{(1/N)}}{cos\left(\frac{-tan^{-1}\left(\frac{cos(0)}{sin(0)}\right)+\frac{\pi \cdot s}{p}\right)}{p}$	CEZPand((re(i∂))^(1/N .π·sianum(r·sin(∂)) 2 N TRNS[CALCEQUALEGN IGRPH] D	CEXPand((re(18))^(1/N 2 4) · (r ² · (cos(8)) ² +r ² ·) TRMS CALCEQUAL CAN ISRPHI D	CExpand((re(ið))^(1/N 1 ¶+r ² •(sin(ð)) ^{2) 2N} +si⊫ TRNS[Calclequalean GRPHL ⊳
$\frac{1}{2N} \left(\frac{-\tan^{-1}(\cos(\theta))^{-1/2N}}{\sin(\theta)} \right)^{-1/2N}$	$\frac{cEzpand((re(16))^{(1/N)}}{\frac{\pi \cdot signum(r \cdot sin(6))}{2}}$	$\frac{cEzpand((re(10))^{(1/N)}}{4}$	CExpand((re(18))^(1/N ¹ / ₂ +r ² · (sin(8)) ²) ^{2N} i TENS[CALCEQUA] eqn [SEPH] ▷

Man erkennt hier im Vergleich zur vorangehenden Formel, dass $y = r \cdot \sin(\theta)$ und $x = r \cdot \cos(\theta)$ gesetzt wurden, d.h. $x/y = \cos(\theta) / \sin(\theta)$. Mit dem geschachtelten Befehl simplify(cExpand(... statt nur cExpand(... wird dieser lange Formelterm etwas vereinfacht: $\cos(\theta) / \sin(\theta) = 1 / \tan(\theta)$.

Nach kurzer Rechenzeit erhält man folgende interessante Formelstruktur im CAS-Menü:

 $i \cdot \sin\{(-\arctan(1/\tan(\theta)) + \pi/2 \cdot \operatorname{sgn}(r \cdot \sin(\theta)))/N\}\}$

Diese Formel ist fast nicht mehr überschaubar, denn z.B. $(sin(\theta))^2 + (cos(\theta))^2 = 1$ und $\theta = -\arctan(1/\tan(\theta)) + \pi/2 \cdot \operatorname{sgn}(r \cdot \sin(\theta))$ wurden nicht vereinfacht!

Lieber Leser, an dieser Stelle muß zur Ehrenrettung des CAS-Resultates folgendes klar gestellt werden, warum nicht vereinfacht wird:

Die symbolische Variable r (bzw. θ) muß keine reelle Zahl (z.B. Winkel im Bogenmaß) sein, z.B. r = 1 + i und $\theta = \pi/2$. Dann gilt sofort ein unerwartetes Ergebnis (Probieren Sie es aus!):

$$r^{2} \cdot (\sin(\theta))^{2} + r^{2} \cdot (\cos(\theta))^{2} = 2i \text{ oder } \operatorname{sgn}(r \cdot \sin(\pi/2)) = (1+i)/\sqrt{2}.$$

Das "Geheimnis" mit dieser Formel wird im Kapitel 7 bzw. 9 gelüftet. Damit konnte das CAS-Resultat nicht anders ausfallen, wenn die symbolischen Variablen r und θ nicht spezifiziert sind! Wird der Befehl **cExpand(** ($r e(i\theta)$)^(1/N)) jedoch etwas "vereinfacht" in der Form cExpand(($r^{(1/N)} \cdot e(i\theta)$)^(1/N)) eingegeben, dann erhält man im CAS-Menü ein von der Schule her bekanntes Resultat:

Wir verlassen nun das CAS-Menü, wechseln in das RUN·MAT-Menü und berechnen im Zahlenbeispiel Haupt- und Nebenwurzeln aus -64 (N = 6). Dazu speichern wir die Indizes k = 0, 1, 2, ..., N-1 in der Liste List1 ab und ergänzen die Hauptwurzel mit dem Faktor exp { *i* List1·2 π /N }, d.h. unter Beachtung des Hauptarguments θ (- $\pi < \theta = \arg(z) \le \pi$) gilt:

$$w_{k} = w_{0} \cdot \exp\{i \operatorname{List1} \cdot 2\pi/N\} = r^{1/N} \cdot \exp\{i \theta/N\} \cdot \exp\{i \operatorname{List1} \cdot 2\pi/N\}$$

(0,1,2,3,4,5)→List √(-64)×e(i×List 1×3 Berechnung aller Wurzelwerte durch Betätigen Done der EXE - Taste und Anzeige der Ergebnisse über den List-Ans-Speicher: MATICPLXICALCINUM I

1

Dieses Beispiel soll damit beendet werden, dass alle Wurzeln in einer Gaußschen Zahlenebene als Scatterplot dargestellt werden. Dazu werden im **RUN·MAT**-Menü die Indizes in der Liste **List1**, die Wurzeln in **List2**, deren Realteile in **List3** und schließlich deren (reelle) Imaginärteile in **List4** abgespeichert. Im **STAT**-Menü sehen wir im Listeneditor die entsprechenden Daten, z.B. ist in **List3** der Realteil der 5. Nebenwurzel markiert:

Nachdem das Betrachtungsfenster mit **SHFT [V-Window]** eingestellt, der Scatterplot **StatGraph1** definiert und mit **DrawOn** eingeschaltet wurde, sehen wir im letzten Bild die sechs Wurzelwerte w_0 bis w_5 .

Es gilt hierbei:

- (1) Alle Wurzelwerte liegen auf einem Kreis mit dem Radius $r^{1/N}$
- ② Alle Wurzelwerte haben den gleichen Winkelabstand $2\pi/N$
 - **③** Der Wurzelwert w_k liegt genau im k-ten Winkelraum D_k

 \odot

Damit kann die zu Beginn dieses Kapitels gestellte dritte Frage "*Warum* erhält man beim Wurzelziehen im Komplexen mit dem Taschenrechner stets nur Zahlen im I. oder IV. Quadranten? " klar beantwortet werden:

Der Taschenrechner zeigt stets die (eindeutig definierte) Hauptwurzel $w_0 \in \mathbf{D}_0$ an, die nach den oben dargelegten Formeln stets in der rechten Halbebene (*I. oder IV. Quadrant*) liegt.

Nunmehr werden verschiedene Varianten der Ergebnisanzeige für die Hauptwurzel vorgestellt:

Die folgenden Bilder zeigen die Haupt- und Nebenwurzeln aus -64 im CAS-Menü in exakter Darstellung:

Die weiteren Bilder zeigen die 9-te Wurzel aus -1 im CAS-Menü in unterschiedlicher Darstellung:

(-1)^(1/9)	মথ(-1)	$\frac{cExpand(3535(-1))}{cos\left(\frac{\pi}{9}\right)+sin\left(\frac{\pi}{9}\right)\cdot i}$	approz 3√3√(-1)
থ <mark>–1</mark>	থ <u>ন</u>		0.940+0.342i
TRHSICALCEQUALERN GRPHID	TRNSICAL CIEQUAL GAN ISRPHI D	TRNS ICAL CIEQUAL GAN ISRPHI D	TRNSICALCIEQUALEAN ISRPHI D

Die 9-te Wurzel aus -1 konnte also auch über die dritte Wurzel durch zweimalige Anwendung erhalten werden.

Angle :Rad Hnswer Type :Real	(-1)^(1/9) -1
DISPIRY •F123	
BANIABS/	

Das "andere" Ergebnis, falls im **SET UP** des **CAS**-Menüs **Answer Type: Real** eingestellt wurde!

Es folgen ein paar Variationen zur 8-ten Wurzel aus -1: Es gibt keine reelle (Neben-)Wurzel!

(-1)^(1/8) श् <u>न</u>	(1997:200 8 Nicht reell Fehler Drücken Sie:[ESC]	$\frac{1}{\sqrt{2}+2} + \frac{1}{\sqrt{2}+2i} = \frac{1}{2}$	approz (-1)^(1/8) 0.924+0.383i
TRNSICAL CIEQUAI A 91 ISRPHI D	TRHSICALCEQUALEGN ISRPHILD	TRNSICAL CEQUAI CAN ISRPHI D	TRNSICALCIEQUAI EGN IGRPHI D

Abschließende allgemeine Bemerkung (vgl. Kapitel 3):

Betrachtet man als Ausgangspunkt des Wurzelziehens eine Zahl z in der N-blättrigen Riemannschen Fläche (Gaußsche Zahlenebene in N Exemplaren mit den Blattnummern k = 0, 1, 2, ..., N-1), dann sagt man: Die N-te Wurzel w_k aus $z \in$ Blatt k ist eindeutig bestimmt und liegt dann im Winkelraum D_k , d.h. $w_k \in D_k$:

$z \in \text{Blatt } k \iff w_k = \sqrt[N]{z} \in D_k$	oder $z \in \mathbf{D}_{\mathbf{k}} \iff w = z^{\mathbf{N}} \in$
--	--

Hinweis: Oftmals werden die Wurzeln aus z einfach mit z_k statt w_k bezeichnet.

Aufgaben:

- 5.1. Berechnen Sie ⁴√-1 im Komplexen und stellen Sie die Wurzeln als Scatterplot in der Gaußschen Zahlenebene dar!
 Geben Sie die Hauptwurzel exakt an (arithmetisch, trignometrisch und exponentiell!).
- 5.2. Geben Sie die Lösungen folgender Gleichungen in exakter Form an! a) $z^6 = -1/2 + 3^{1/2}/2i$ b) $z^5 = 1 - 3^{1/2}i$ c) $z^{-3} = 2$

5.3. Die Funktion $w = \sqrt[3]{z}$ ist auf der dreiblättrigen Riemannschen Fläche definiert. Ermitteln Sie w für a) $z = 27i \in \text{Blatt 2}$ b) $z = 27i \in \text{Blatt 0}$ c) $z = -4 \cdot 2^{1/2} + 4 \cdot 2^{1/2}i \in \text{Blatt 1}$

a) $z = 2\pi e$ Blatt 2 b) $z = 2\pi e$ Blatt 0 c) $z = -4\cdot 2^{-2} + 4\cdot 2^{-2} i e$ Blatt 0 d) $z = -4\cdot 2^{1/2} + 4\cdot 2^{1/2} i e$ Blatt 0 e) z = -3 + i e Blatt 2

5.4. Berechnen Sie alle Werte von:

- a) $\sqrt{-5+12i}$ b) $\sqrt[3]{12+5i}$ c) $\sqrt[3]{3-4i}$ d) $\sqrt[3]{\cos 135^\circ + i \cdot \sin 135^\circ}$ e) $\sqrt[4]{\cos 60^\circ + i \cdot \sin 60^\circ}$ f) $\sqrt[5]{8-6i}$ g) $\sqrt[3]{-1}$
- 5.5. Geben Sie jeweils die Hauptwurzel an:

a)
$$\sqrt{-49}$$
 b) $\sqrt{-x^2}$, x reell, c) $\sqrt{-1/9}$ d) $\sqrt{-x^2y^2}$, x, y reell, e) $\sqrt{-49a^2}$, a reell,
f) $\sqrt{-48} + \sqrt{-75} + \sqrt{-27}$ g) $\sqrt{-12} + \sqrt{-8} + \sqrt{-0,6}$

5.6. Vereinfachen Sie unter Beachtung der Hauptwurzeln die folgenden Terme:

a)
$$\sqrt{-3} \cdot \sqrt{-3}$$
 b) $\sqrt{-2} \cdot \sqrt{-8}$ c) $\sqrt{-a} \cdot \sqrt{b}$, *a*, *b* reell, d) $a \cdot i : \sqrt{-a^3}$, *a* reell,

e)
$$\sqrt{x - y} : \sqrt{y - x}$$
, x, y reell, f) $\sqrt{a - b} \cdot \sqrt{b - a}$, a, b reell, g) $\sqrt{-3} \cdot \sqrt{12} : (i \cdot \sqrt{-a^2})$
Hinweis: Nutzen Sie eine Fallunterscheidung, falls notwendig.

- 5.7. Berechnen Sie die N-ten Einheitswurzeln $z^{(1/N)}$ mit z = 1 und N = 2, 3, 4, 6, 8, 12. Stellen Sie die Wurzeln für ein festes N jeweils als Scatterplot dar und begründen Sie, warum $\sqrt{1} = -1$ möglich sein kann.
- 5.8. Geben Sie die Lösungen in Aufgabe 5.4. sowohl exakt als auch auf vier Kommastellen gerundet an (arithmetische Darstellung). Formen Sie anschließend alle Ergebnisse in die exponentielle Darstellung um und nutzen Sie dabei das Bogenmaß zur Winkelangabe.

Der komplexe Logarithmus einer komplexen Zahl *z* (Haupt- und Nebenwerte)

Was den Schüler hier besonders interessiert:

Warum erhält man beim Logarithmieren im Komplexen mit dem Taschenrechner stets nur Zahlen in einem waagerechten Parallelstreifen um die x-Achse?

Angle :Rad ↑ Coord :On Grid :Off Azes :Off Label :Off Display :Fiz4 Realla:baire:#a	ln (1+1000i) 6.9078+1.5698i ln (1-1000i) 6.9078-1.5698i ln (-1+10^6i) 13.8155+1.5708i LISTIMATICELXICALCHUMI P	Im RUN·MAT -Menü: Voreinstellung im SET UP auf Complex Mode: a+bi
---	--	--

Es scheint tatsächlich so zu sein, dass sich der Imaginärteil y des komplexen Logarithmus kaum von der x-Achse wegbewegt, im Beispiel bis auf **-1,5698** nach "unten" und bis auf **1,5708** nach "oben". Hingegen sind durchaus "große" x-Werte möglich, im Beispiel **13,8155**.

In diesem Kapitel soll die algebraische Struktur des komplexen Logarithmus offen gelegt werden. Dazu begeben wir uns in das **CAS**-Menü und stellen dort das **SET UP** auf **Complex Mode: a+bi** (Answer Type: Complex) und Winkelmessung im **Bogenmaß** (Angle: Rad) ein:

Wir erhalten für $z = x + y \cdot i$ eine von der Schulmathematik her bekannte Formel für den Hauptwert des komplexen Logarithmus:

$$\ln(x + y \cdot i) = \ln \sqrt{x^2 + y^2} + (-\arctan(x/y) + \pi/2 \cdot \operatorname{sgn}(y)) \cdot i$$

kurz

$$\ln(z) = \ln |z| + \arg(z) \cdot i$$
 mit $-\pi < \theta = \arg(z) \le \pi$ (Hauptargument),

wenn man $r = |z| = \sqrt{x^2 + y^2}$ und $\theta = \arg(z) = -\arctan(x/y) + \pi/2 \cdot \operatorname{sgn}(y)$ ausnutzt, vgl. hierzu wieder Kapitel 3, S. 19f. Damit erweist sich auch hier das symbolische Rechnen als ein nützlicher Ratgeber zur Formel für das Logarithmieren. Die zu Beginn dieses Kapitels gestellte Frage kann damit klar beantwortet werden: Der CASIO-Taschenrechner ALGEBRA FX 2.0 berechnet für $\ln(x + y \cdot i)$ stets den DIN-gerechten Hauptwert, dessen Imaginärteil in der Tat im Intervall $(-\pi, \pi]$ liegt. Dies ist genau der Parallelstreifen D_0 , der im Kapitel 4, S. 22, beschrieben wird!

Wir berechnen nun $\ln(r \cdot e^{(\theta i)})$ im CAS-Menü wieder mit Hilfe des cExpand(... - Befehls:

CExpand(ln (re(@i)))	<u>cEzpand(ln (re(8i)))</u>	<u>cExpand(ln (re(8i)))</u>	cEzpand(ln (re(ði)))
ln(r ² ·(cos(@)) ² +r ² ·(s	•(sin(8)) ²)	·[-tan⊣(<u>cos(8)</u>)+ <mark>π·sigr</mark>	. <mark>π•signum(r•sin(ð))</mark>]i
2 ♪	◀	¶	◀
TRNSICALCEQUAI EGN IGRPHI D	TENSICALCIEQUAI CAN IGRPHI D	TRNSICALCIEQUAI CAN IGRPHI D	TRNSICALCIEQUAI EGN IGRPHI D

 $\ln(r \cdot e^{(\theta i)}) = \ln(r^{2} \cdot (\sin(\theta))^{2} + r^{2} \cdot (\cos(\theta))^{2}) + (-\arctan(\cos(\theta) / \sin(\theta)) + \pi/2 \cdot \operatorname{sgn}(r \cdot \sin(\theta))) \cdot i$

Diese Formel ist fast nicht mehr überschaubar, denn z.B. $(\sin(\theta))^2 + (\cos(\theta))^2 = 1$ und $-\arctan(\cos(\theta)/\sin(\theta)) + \pi/2 \cdot \operatorname{sgn}(r \cdot \sin(\theta)) = \theta$ wurden nicht vereinfacht!

Lieber Leser, an dieser Stelle muß erneut zur Ehrenrettung des **CAS**-Resultates folgendes klar gestellt werden, warum nicht vereinfacht wird:

Die symbolische Variable *r* (bzw. θ) muß keine reelle Zahl (z.B. Winkel im Bogenmaß) sein, z.B. *r* = 1+*i* und $\theta = \pi/2$. Dann gilt sofort ein unerwartetes Ergebnis (Probieren Sie es aus!):

$$r^{2} (\sin(\theta))^{2} + r^{2} (\cos(\theta))^{2} = 2i \text{ oder } \operatorname{sgn}(r \cdot \sin(\pi/2)) = (1+i)/\sqrt{2}.$$

Das "Geheimnis" mit dieser Formel wird im Kapitel 7 bzw. 9 gelüftet. Damit konnte das **CAS**-Resultat nicht anders ausfallen, wenn die symbolischen Variablen *r* und θ nicht spezifiziert sind! Mit dem geschachtelten Befehl **simplify(cExpand(...** statt nur **cExpand(...** wird dieser lange Formelterm etwas vereinfacht: $\cos(\theta) / \sin(\theta) = 1/\tan(\theta)$:

simplify(cExpand(ln (]simplify(cExpand(ln (simplify(cExpand(ln (cExpand(ln (re(ði)))
$-2 \cdot \tan^{-1} \left(\frac{1}{1 + \sin(\alpha)} \right) \cdot \mathbf{i} + \ln(\alpha)$	$\left(\frac{1}{1} \left(r^2 \cdot \left(\cos(\theta) \right)^2 + r^2 \cdot \left(\frac{1}{2} \right)^2 \right) \right)$	P.(sin(0)) ²)+π.signum(π.sienum(r.sin(0)).i
(tante))	2	la pli	4
		11 - 11	
TRNSICAL CEQUAL AND GREAT D		TRNSICAL CEQUAL CAN ISREHI D	

Es ergeben sich ähnliche Formelstrukturen wie im Kapitel 5, S. 25f, und alle dort getroffenen Feststellungen sind auch hier voll gültig.

Mit der wiederum "vereinfachten" Eingabe des Befehls **cExpand**(ln(r)+ $ln(e^{(\theta i)})$) erhält man:

cExpand(ln (r)+ln (e(cExpand(ln (r)+ln (e(cExpand(ln (r)+ln (e(ln (r)+ln (e(ði)))
ln((cos(0)) ² +(sin(0)) ²	$\frac{2}{1}$ +ln(r)+ $\left[-t, ant\right] \left[\frac{\cos(\theta)}{2}\right]$	(<u>cos(θ)</u>) ₊ π·sianum(sir	$\pi \cdot \text{signum}(\text{sin}(\theta))$
2	Isin([sin(0)] 2	4 ² ^j •
TRNSICAL CIEQUAL AGN IGRAHI D	TRNSICAL CIEQUAI A 90 ISRPHI D	TRNS CALCIEQUAL 690 IGREHI D	TRNS CALCIEQUAL 690 (GRPH) D

und schließlich mit simplify(cExpand($\ln(r) + \ln(e^{(\theta i)})$)):

 \odot

Wir kommen nun zu den (unendlich vielen) Werten des komplexen Logarithmus und geben zuerst die entsprechenden Formeln an:

 $w_{k} = \ln(z) = \ln|z| + (\arg(z) + k \cdot 2\pi) \cdot i, \ k = ..., -2, -1, 0, 1, 2, ...$

d.h. für den Hauptwert (k = 0)

$$w_{n} = \ln(z) = \ln|z| + \arg(z) \cdot i$$

und für den k-ten Nebenwert ($k = \pm 1, \pm 2, \pm 3, ...$)

$$w_{k} = w_{0} + k \cdot 2\pi i = \ln |z| + (\arg(z) + k \cdot 2\pi) \cdot i$$

Mit dem Index k wird hier wieder im Urbildbereich der z-Werte die Blattnummer (einer unendlich-blättrigen Riemannschen Fläche) und im Bildbereich der Logarithmenwerte w_k der Parallelstreifen D_k bezeichnet, in dem dann der entsprechende Haupt- bzw. Nebenwert liegen wird, vgl. Kapitel 4, S. 21f.

Beispiel:

Man berechne sowohl näherungsweise (**RUN·MAT**-Menü) als auch exakt (**CAS**-Menü) für z = 1 + iden Haupt- und die Nebenwerte in den Parallelstreifen **D**_k mit $k = 0, \pm 1, \pm 2$

und stelle die Ergebnisse abschließend graphisch dar (Scatterplot im **STAT**-Menü).

Anordnung der Haupt- und Nebenwerte untereinander, entsprechend der Lage in den Parallelstreifen

Anzeige der Werte aus dem List-Ans-Speicher

Die folgenden Bilder zeigen die Haupt- und Nebenwerte in exakter Darstellung im CAS-Menü:

$\frac{\ln (1+i)}{\pi i + \frac{\ln(2)}{2}}$	$\frac{\text{R}=\ln (1+i)-2\times 2\pi i}{\text{R}=\frac{-15\pi i}{4}+\frac{\ln(2)}{2}}$	$B=\frac{1n (1+i)-1\times 2\pi i}{B=\frac{-7\pi i}{4}+\frac{1n(2)}{2}}$	
Hauptwert w ₀	A = Nebenwert w_{-2}	B = Nebenwert w_{-1}	
TRNSICALCIEQUAL 690 IGRPHI D	TRNSICAL CIEQUAL CAN IGRPHI D	TRNSICAL CIEQUAI EGN ISRPHI D	
	C=ln (1+i)-0×2лі C= <mark>лі</mark> + <u>ln(2)</u> В	D=ln (1+i)+1×2лі D= <mark>9лі</mark> + <u>ln(2)</u> 4 2 Ш	E=ln (1+i)+2×2πi E= <mark>17πi</mark> + <u>ln(2)</u> 4 2 Β
	$C = Hauptwert w_0$	D = Nebenwert w_1	E = Nebenwert w_2
	TRNSICALCIEQUALEGN IGRPHI D I	ITRNSICALCIEQUALEGN IGRPHI D II	<u>ITRNSICALCIEQUALEGN IGRPHI DI I</u>

Datenübertragung vom List-Ans-Speicher in Listen des STAT-Menüs und Einrichten des Betrachtungsfensters:

List Ans+List 1 ReP List 1+List 2 ImP List 1+List 2 ImP List 1+List 3 ImP List 1+List 3 Done LISTIMATICPLXICALCINUM D SRPHICALC	List 2 List 3 List 4 0.3465 -11.78 0.3465 -5.497 0.3465 -5.497 0.3465 -7.0685 0.3465 -7.0685 0.3465 -7.0585 0.7854 0.7854	Betrachtungsfenster Maz 1 scale:0.1 dot 7.9365E-03 Ymin -18 maz 18 INITIRIGISTOISTOIRCE	Die Abspeicherung erfolgte im RUN·MAT -Menü, die Listeneinsicht erfolgt bereits im STAT -Menü, ebenso die Fenstereinstellung.
--	---	---	---

Der komplexe Logarithmus einer komplexen Zahl z

StatGraghi

Definition des Scatterplots StatGraph1 über den Befehl GRPH 5:Set :

Aktivieren des Plots StatGraph1 über den Befehl GRPH 4:Select, dann StatGraph1: DrawOn und schließlich DRAW :

Wert w, =0. 3465735902 Y=13. 35176877 StatGraphi Ф Wert w. :0. 3465735902 Y=7. 06858347 StatGraehl **ረ**ን Wert wo X=0. 3465735902 Y=0. 785398 | 633 StatGraphi ¢ Wert w_1 Y= -5. 497787143 . **:=0.** 3465735902 StatGraph1 Δ Wert w_,

Y=-11.18091245

X=0.3465735902

Lage der Haupt- und Nebenwerte in der Gaußschen Zahlenebene senkrecht übereinander. d.h. die Realteile sind unverändert: x = 0,34657... und die Imaginärteile haben untereinander den Abstand 2π .

Beispiel:

Anzugeben sind alle Lösungen z der Gleichung $e^{z} = 10 + 10i$. Wenn es eine Lösung z gibt, dann findet man dazu sofort unendlich viele andere Lösungen wegen der Periodizität der komplexen e-Funktion. Wir rechnen wie folgt: $z = \ln(10 + 10i)$ und erhalten mittels des Taschenrechners den Hauptwert für z :

ln (10+10i) 2.6492+0.7854i	ln (10+10i) 2.6492+0.7854i eAns 10.0000+10.0000i	ln (10+10i) <mark>πi</mark> +ln(10)+ ^{ln(2)} 2	eAns 10+10i
LISTIMATICPLXICALCINUMI	LISTIMATICPLXICALCINUMI D	TRNSICAL CEQUAL EGN ISRPHI D	TRNSICAL CEQUALERN ISRPHI D

Die ersten zwei Bilder zeigen den Hauptwert z = 2,6492 + 0.7854i im **RUN·MAT**-Menü einschließlich der Probe $e^{Ans} = 10 + 10i$. Im CAS-Menü erhält man das exakte Ergebnis für den Hauptwert z. Die allgemeine Lösung lautet somit: $z = 2,6492 + 0.7854i + k \cdot 2\pi i$ mit $k = 0, \pm 1, \pm 2, \pm 3, \dots$

Im Bereich der komplexen Zahlen wird üblicherweise nur mit der In-Funktion gerechnet. Andere Basen (z.B. 10) sind hier unüblich und werden gemäß der Formel $\lg z = \ln z / \ln 10$ umgerechnet, vgl. CAS-

Menü:

Hinweis:

Wegen der Mehrdeutigkeit des komplexen Logarithmus gelten die im Reellen bekannten Logarithmengesetze nicht mehr uneingeschränkt, z.B. folgt aus $\ln z_1 = \ln z_2$ nicht unmittelbar $z_1 = z_2$ sondern nur $z_1 = z_2 + k \cdot 2\pi i$ mit **einem** passenden $k = 0, \pm 1, \pm 2, \pm 3, ...$

Aufgaben:

6.1. Berechnen Sie In z im Komplexen ($z \in \text{Blatt } k, k = 0, \pm 1, \pm 2$) und stellen Sie die Logarithmen in den Parallelstreifen D_{-2} bis D_2 als Scatterplot in der Gaußschen Zahlenebene dar!

Geben Sie den Hauptwert exakt an (arithmetisch, trignometrisch und exponentiell!).

a) z = 27i b) $z = \cos 60^{\circ} + i \cdot \sin 60^{\circ}$ c) $z = -4 \cdot 2^{1/2} + 4 \cdot 2^{1/2}i$

- 6.2. Geben Sie die Lösungen folgender Gleichungen in exakter Form an!
 - a) $e^{z} = -1/2^{1/2} + i/2^{1/2}$ b) $e^{z} = -2$ c) $e^{z} = i$
- 6.3. Die Funktion w = ln z ist auf der unendlich-blättrigen Riemannschen Fläche definiert. Ermitteln Sie w im RUN·MAT-Menü für
 a) z = 1-4i ∈ Blatt 6 b) z = 1-4i ∈ Blatt 0 c) z = -i ∈ Blatt 2 d) z = -i ∈ Blatt 1

a) $z = 1 - 4i \in \text{Blatt 6}$ b) $z = 1 - 4i \in \text{Blatt 0}$ c) $z = -i \in \text{Blatt 2}$ d) $z = -i \in \text{Blatt 1}$ d) $z = -1 \in \text{Blatt 4}$ e) $z = -1 \in \text{Blatt 2}$

6.4. Die Funktion $w = \ln z$ ist auf der unendlich-blättrigen Riemannschen Fläche definiert. Ermitteln Sie w im **CAS**-Menü für

a) $z = 1 - 4i \in \text{Blatt 6}$ b) $z = 1 - 4i \in \text{Blatt 0}$ c) $z = -i \in \text{Blatt 2}$ d) $z = -i \in \text{Blatt 1}$ d) $z = -1 \in \text{Blatt 4}$ e) $z = -1 \in \text{Blatt 2}$

6.5. Berechnen Sie alle Werte von $w = \ln z$ für :

a) z = -5+12i b) z = 12+5i c) z = 3-4i d) $z = \cos 135^\circ + i \cdot \sin 135^\circ$ Wie lautet jeweils der Hauptwert?

- 6.6. Geben Sie die Lösungen in Aufgabe 6.3. in einer Liste auf vier Kommastellen gerundet an (arithmetische Darstellung). Formen Sie anschließend alle Ergebnisse in die exponentielle Darstellung um und nutzen Sie dabei das Bogenmaß zur Winkelangabe.
- 6.7. Geben Sie alle Lösungen der Gleichung $e^{z} = e^{3-4i}$ an.
- 6.8. Stellen Sie die Gleichung $w = (e^z e^{-z})/2$ im **CAS**-Menü nach z um. Hinweis: Nutzen Sie den **Solve(...** - Befehl und interpretieren Sie die Ergebnisse. Wie würden Sie die Gleichung "per Hand" nach z umstellen, wenn z reell ist?
- 6.9. Stellen Sie die Gleichung $w = (e^{z} + e^{-z})/2$ im **CAS**-Menü nach z um. Hinweis: Nutzen Sie den **Solve(...** - Befehl und interpretieren Sie die Ergebnisse. Wie würden Sie die Gleichung "per Hand" nach z umstellen, wenn z reell ist?

Eine Bemerkung zur komplexen Signum-Funktion (Vorzeichenfunktion)

Was den Schüler hier besonders interessiert:

Wie berechnet man das "Vorzeichen" einer komplexen Zahl z ?

Die **Signum**-Funktion (Vorzeichen-Funktion) y = sgn(x) ist für x = 0 unstetig (und dort nicht definiert) und es gilt im Reellen:

$$y = \operatorname{sgn}(x) = -1$$
 für $x < 0$ und $y = \operatorname{sgn}(x) = 1$ für $x > 0$.

Wir sehen uns das im CAS-Menü an und drücken dazu die OPTN - Taste und dann F4:

Im **GRPH**·**TBL**-Menü kann der graphische Verlauf der reellen Vorzeichen-Funktion dargestellt werden, jedoch steht dort der **signum(...** - Befehl nicht zur Verfügung. Mit Hilfe der Betragsfunktion **Abs** bzw. der (postiven) Wurzelfunktion $(X^2)^{1/2}$ definiert man hier:

$$y = \operatorname{sgn}(x) = x / \operatorname{Abs} x = x / \sqrt{x^2}$$
 für $x \neq 0$

Vor dem Zeichnen (F5 - Taste drücken: DRAW) wurde das Betrachtungsfenster eingestellt!

	Y1=X/Abs X	Y1=X/Abs X	Y1=X/Abs X
		X-Wert einseben	
		- X:-1.234	
TRACEIZOOMISKTCHG-SLUITABLI D	X=0 Y=ERROR	X=D Y=ERROR	X=-1.234 Y=-1

Mit der **F1**-Taste (**TRACE**) wird der Cursor aktiviert. Es können Punkte des Graphen abgetastet werden. Für x = 0 erscheint y = ERROR (d.h. kein *y*-Wert definiert!). Durch Drücken der **X.A.T** -Taste öffnet sich ein Fenster zur Eingabe anderer *x*-Werte, z.B. **x=1,234** (dann **EXE**).

Wird ein *x*-Wert außerhalb des Betrachtungsfensters eingegeben, erscheint eine Fehlermeldung!

X\1(Xs)			
X			
101			
	Im CAS-Menü kann die Gleichheit der reellenTerme	$x / \sqrt{x^2}$	und
CO TABS X ! ISISH HYP FMEM	x / Abs x unmittelbar überprüft werden.		

Wir kommen nun zur **komplexen Signum-Funktion** und stellen fest, dass hier ähnlich der Vektorrechnung der Ortsvektor (Zeiger) zur komplexen Zahl *z* unter Beibehalten der Richtung auf die Länge **1** normiert wird.

Im CAS-Menü sieht man das sowohl im Beispiel z=1+i als auch beim symbolischen Rechnen mit cExpand(signum(x+yi)) bzw. simplify(cExpand(signum(x+yi))):

CO Abs X ! Sign HYP FMEM

Damit kann die Eingangs gestellte Frage dahingehend beantwortet werden, dass es im Komplexen nicht um ein Vorzeichen sondern um eine auf den Betrag Abs $z^0 = 1$ ("Länge" 1) normierte komplexe Zahl $z^0 = \text{signum}(z) = e^{i \operatorname{Arg} z}$ geht.

simplify(cExpand(sign	signum((A+Bi)×(X+Yi))	Beispiel zur Normierung eines Produktes
		komplexer Zahlen $(a + bi) \cdot (x + yi)$
		mittels der Signum-Funktion und dem Befehl
TRNSICAL CEQUAL CAN IGRPHI D	TRNSICALCIEQUAI CAN ISRPHI D	simplify(cExpand(signum((<i>a</i> + <i>bi</i>)(<i>x</i> + <i>yi</i>))))

In der anschließenden Bildfolge wurde versucht, den Term **signum(1+**i**)** über den Term-Speicher (**FMEM**) **f**₁ vom **CAS**-Menü in des **RUN·MAT**-Menü zu übernehmen:

Nach dem Wechsel über das Hauptmenü in das **RUN·MAT**-Menü gelingt der Aufruf aus dem Termspeicher, jedoch scheitert die Ausführung der Berechnung von **signum(1+**i**)**, da dieser Berechnungsbefehl im **RUN·MAT**-Menü nicht vorgesehen ist.

Die allgemeine Potenz $z_1^{z_2}$ (Haupt- und Nebenwerte)

Was den Schüler hier besonders interessiert:

Warum ist die allgemeine Potenz $z_1^{Z_2}$ unendlich vieldeutig?

Schreibt man die komplexe Basis z_1 z.B. in exponentieller Form und beachtet dabei die Periodizität der komplexen e-Funktion, etwa $z_1 = \sqrt{2/2} + \sqrt{2/2}i = e^{i\pi/4} = e^{i(\pi/4 + 2k\pi)}$ mit $k = 0, \pm 1, \pm 2, \pm 3, ...,$ dann ergeben sich für die allgemeine Potenz die Werte

$$z_1^{Z_2} = (\sqrt{2}/2 + \sqrt{2}/2i)^{Z_2} = e^{i(\pi/4 + 2k\pi)Z_2}$$

Damit ergibt sich z.B. für k = 0 der Hauptwert der Potenz zu $e^{i(\pi/4)Z_2}$, der 1. Nebenwert ist dann $e^{i(9\pi/4)Z_2}$, der -1. Nebenwert der Potenz ist hier $e^{i(-7\pi/4)Z_2}$ usw.

Die allgemeine Formel lautet:

$$w = z_1^{Z_2} = \mathbf{e}^{(\ln(|Z_1|) + i \arg(Z_1) + \mathbf{k} \cdot 2\pi i) \cdot Z_2}$$
 mit $k = 0, \pm 1, \pm 2, \pm 3, \dots$

Den Hauptwert der allgemeinen Potenz erhält man wieder im Fall k = 0, wenn für $\arg(z_1)$ das DIN-gerechte Hauptargument $-\pi < \theta = \arg(z_1) \le \pi$ eingesetzt wird. Der Index k wird wieder als Blattnummer interpretiert und man sagt, der k-te Nebenwert der allgemeinen Potenz liegt im **Blatt** k einer unendlich-blättrigen Riemannschen Fläche.

Beispiel:

Man berechne den Hauptwert und die *k*-ten Nebenwerte für $w = (1-i)^{(1+i)}$ und $k = 0, \pm 1, \pm 2$. Wie lösen die Aufgabe im **RUN·MAT**-Menü:

Wegen der zu erwartenden Größenordnung der Ergebnisse wird das Anzeigeformat auf **Display: Sci3** eingestellt. Die Blattnummern $k = 0, \pm 1, \pm 2$ werden in der Liste **List 1** abgespeichert. Die Haupt- und Nebenwerte werden nun sofort komplett erhalten, indem statt k der Listenname in den Exponenten geschrieben wird:

Das Ergebnis wird im List-Ans-Speicher abgelegt und angezeigt:

KAPITEL 8 Die N-te Wurzel einer komplexen Zahl z

Wir überzeugen uns noch einmal davon, dass $e^{(\ln(1-i)+2\pi i \operatorname{List1})}$ tatsächlich 1-*i* ist:

Nach diesem Beispiel betrachten wir nun wieder die algebraische (symbolische) Struktur der Berechnungsformeln für den Hauptwert von $z_1^{Z_2} = (a+bi)^{(x+yi)}$ im **CAS**-Menü:

Diese umfangreiche Formel erhält man mit dem cExpand(... - Befehl:

<u>cEzpand((A+Bi)^(X+Yi)</u> (tan-(AB ⁻¹)_ <u>π·signum</u> ε 2 ₽	$\frac{cEzpand((R+Bi)^{(X+Yi)})}{2} Y \cdot \cos\left(\frac{\ln R}{2}\right)$	<u>cEzpand((A+Bi)^(X+Vi)</u> €os[<u>ln(A²+B²).y</u> +(-ta	<u>cEzpand((A+Bi)^(X+Yi)</u> tan-(A)+ <u>π·signum(B)</u>
TRNSICAL CIEQUAL 69N IGRPHI D	TRNSICALCIEQUAL CAN ISRPHI D	TRNSICAL CIEQUAL CAN IGRPHI D	TRNSICAL CIEQUAL CAN IGRPHI D
$\frac{\operatorname{CEzPand}((\mathbf{A}+\mathbf{B}\mathbf{i})^{(X+\mathbf{Y}\mathbf{i})}}{\operatorname{Um}(\mathbf{B})} X \cdot \left[(\mathbf{A}^{2}+\mathbf{B}^{2})^{X} + \boldsymbol{\epsilon} \right]$	<u>cEzpand((A+Bi)^(X+Yi)</u> (tan-(AB ⁻¹)_ <u>π·signu</u> 2 ↓€ ↓	CEzpand((A+Bi)^(X+Vi) •signum(B) 2 ● •sin(1n(A ●	<u>cEzpand((A+Bi)^(X+Vi)</u> sin[<u>1n(A²+B²).γ</u> +[-t _∎
TRNSICALCIEQUALERIN IGRPHI D	TRNSICALCIEQUALERN ISRPHI D	TRNSICALCIEQUALERIN ISRPHI D	TRNS ICALCIEQUAL 69N IGRPHI D

38 Paditz: Komplexe Zahlen

© CASIO Europe GmbH Norderstedt

cExpand((A+Bi)^(X+Yi)	(A+Bi)^(X+Yi))
$\left(-\tan^{-1} \left(\frac{A}{B} \right) + \frac{\pi \cdot \text{signum}(B)}{2} \right)$	<u>num(B)</u>)X]·√(R ² +B ^{2)X} i
TRNSICAL CIEQUAI e 911 IGRPHI D	TRNSICALCEQUALEGN (GRPHILD)

Mit dem simplify(cExpand(... - Befehl werden gemeinsame Faktoren ausgeklammert:

$$e^{(\arctan(a/b)-\pi/2\cdot\operatorname{sgn}(b))\cdot y} \cdot \left(\cos\left(\ln(a^2+b^2)y/2+(\arctan(a/b)+\pi/2\cdot\operatorname{sgn}(b))\cdot x\right)+\sin\left(\ln(a^2+b^2)y/2+(\arctan(a/b)+\pi/2\cdot\operatorname{sgn}(b))\cdot x\right)i\right)\cdot \sqrt{(a^2+b^2)^x}$$

Diese für den Taschenrechner aufwendigen Umformungen erforden viel Speicherplatz, so dass bei der Fehlermeldung "**Speicherfehler**" zunächst frühere Umformungen gelöscht werden sollten.

Ebenso wird daran erinnert, dass im **SET UP** des **CAS**-Menüs der **Complex Mode** eingestellt ist.

Der zuletzt erhaltene Formelterm kann gemäß der Eulerschen Formel und unter Beachtung der Blattnummer *k* weiter zusammengefaßt und mit der ursprünglichen Definition der allgemeinen Potenz $z_1^{Z_2}$ verglichen werden:

$$w_{k} = z_{1}^{Z_{2}} = e^{(\ln(|a+bi|) + i \arg(a+bi) + k \cdot 2\pi i) \cdot (x+yi)}$$

= $e^{(x \cdot \ln(|a+bi|) - y \cdot (\arg(a+bi) + k \cdot 2\pi))} \cdot e^{i(y \cdot \ln(|a+bi|) + x \cdot (\arg(a+bi) + k \cdot 2\pi))}$
= $r_{k} \cdot e^{i\theta_{k}}$ mit $k = 0, \pm 1, \pm 2, \pm 3, ...$

Damit ergeben sich für den von k abhängigen Betrag $r_k = |w_k|$ und Winkel $\theta_k = \arg(w_k)$:

$$r_{k} = e^{(x \cdot \ln(|a+bi|) - y \cdot (\arg(a+bi) + k \cdot 2\pi))} = \sqrt{(a^{2}+b^{2})^{x}} \cdot e^{-(-\arctan(a/b) + \pi/2 \cdot \operatorname{sgn}(b) + k \cdot 2\pi) \cdot y}$$

$$\theta_{k} = y \cdot \ln(|a+bi|) + x \cdot (\arg(a+bi) + k \cdot 2\pi) = y \cdot \ln(\sqrt{a^{2}+b^{2}}) + (-\arctan(a/b) + \pi/2 \cdot \operatorname{sgn}(b) + k \cdot 2\pi) \cdot x$$

In den zuletzt angeführten Formeln wurde das Hauptargument arg(a+bi) wieder in der im CAS-Menü üblichen Form dargestellt, vgl. Kapitel 5 S. 25f :

$$arg(a+bi) = -arctan(a/b) + \pi/2 \cdot sgn(b)$$

Beispiel:

Man berechne den Hauptwert und den *k*-ten Nebenwert für $w = (1+i)^{(2-3i)}$. Weiterhin sind folgende Größen anzugeben: **Re**(*w*), **Im**(*w*), |w| und **arg**(*w*) sowie das *m*-te Nebenargument von w_k . Wie lösen die Aufgabe im **RUN·MAT**-Menü bzw. **CAS**-Menü und ergänzen dort den Formelanteil für den *k*-ten Nebenwert sowie das *m*-te Nebenargument per Hand.

Zunächst werden Überlegungen zum Hauptwert w_0 angestellt:

Falls es mit dem Speicherplatz zu knapp wird: Löschen von Speicherplatz im **CAS**-Menü z.B. mit: **CLR 3: ALLEQU**

si nglifud - Congourd//C	D simplify(Abs (cExpand	s inglifulde (sfame d	
Constaly and shall an	. [[(top-1]_π·signu	Löschen	
speichertenier		I A Is : FEXEN	
(Drücken Sie:[ESC]	> 3: ALLEQU >	VI Nein [ESCI >	
·	2:VarAll		
	1:clrVar		
TRNSICALCIEQUAI E9N IGRPHI D	CLR SW RANS D	CLR SW RANS D	CLR SW RANS D

Exakte Darstellung der Potenz (Hauptwert) im CAS-Menü:

$(1+i)^{(2-3i)}$	cExpand((1+i)^(2-3i))	cExpand((1+i)^(2-3i))	Mit SW
B approx H cExpnd	$2^{4} \left[\frac{3\pi}{2^{3}\pi} \left[\frac{3 \cdot \ln(2)}{2} \right] \right]_{1}$	$e^{4}e^{3\pi}e^{(3\cdot\ln(2))}$	Cursor v
9:sbstit 8:collct		<pre>2 / 2 / 2</pre>	nisanzeig
7.combin 46.smelfy			bezeile g
TANS CALCEQUAL CAN ISRPHI D	TRNSICAL CIEQUAL CAN IGRAHI D		den.

Mit **SW** kann mit dem Cursor von der Ergebnisanzeige in die Eingabezeile gewechselt werden.

Im CAS-Menü wurde folgendes Ergebnis angezeigt:

$$w_0 = 2 \cdot \sqrt[4]{e^{3\pi}} \cdot (\sin(3/2 \cdot \ln(2)) + i \cdot \cos(3/2 \cdot \ln(2)))$$

Gemäß der trigonometrischen Darstellung (Normalform) erwartet man jedoch ein Ergebnis der Form:

1.0397

21.1014

$$w_0 = r_0 \cdot \left(\cos(\theta_0) + i \cdot \sin(\theta_0)\right) ,$$

d.h. die **cos**- und die **sin**-Funktion erscheinen "vertauscht" im Grafikdisplay. Wie ist das zu erklären? Nach dem korrekten Ergebnis im **RUN·MAT**-Menü gilt

$$w_0 = 21,101 \cdot (\cos(0,169\pi) + i \cdot \sin(0,169\pi))$$

mit $r_0 = 21,101 = \sqrt[4]{e^{3\pi}}$ und $\theta_0 = 0,169\pi = 0,531 \neq 3/2 \cdot \ln(2) = 1,04$, d.h. $3/2 \cdot \ln(2)$

3/2×1n (2)

2×4×√е(Зл)

ist nicht das Hauptargument (im Bogenmaß)

- und auch kein Nebenargument - der Zahl w_0 .

Damit wird deutlich:

Die Normalform der trigonometrischen Darstellung $w_0 = r_0 \cdot (\cos(\theta_0) + i \cdot \sin(\theta_0))$

wurde im **CAS**-Menü hier für dieses Beispiel nicht angezeigt. Es kam hier die "vereinfachte" Darstellung

$$w_0 = r_0 \cdot \left(\sin(\pi/2 - \theta_0) + i \cdot \cos(\pi/2 - \theta_0) \right) = r_0 \cdot \left(\sin(3/2 \cdot \ln(2)) + i \cdot \cos(3/2 \cdot \ln(2)) \right)$$

zur Anzeige im Taschenrechnerdisplay.

Damit wurde im CAS-Menü das Hauptargument $\theta_0 = \pi/2 - 3/2 \cdot \ln(2) = 0,169\pi = 0,531$

zu Gunsten einer "vereinfachten" Darstellung in $\pi/2 - \theta_0 = 3/2 \cdot \ln(2) = 1,04$ umgeformt - unter Anwendung der trigonometrischen Beziehungen

 $\cos(\pi/2 - 3/2 \cdot \ln(2)) = \sin(3/2 \cdot \ln(2))$ und $\sin(\pi/2 - 3/2 \cdot \ln(2)) = \cos(3/2 \cdot \ln(2))$.

Anmerkung:

Die angezeigte "Variante" von w_0 ist korrekt, jedoch ist dabei $3/2 \cdot \ln(2)$ weder das Hauptnoch irgendein Nebenargument von w_0 !

Bevor wir zu den Nebenwerten der allgemeinen Potenz kommen, eine Bemerkung zur Berechnung des Betrages im **CAS**-Menü. Trotz des Befehls **simplify(...** wird der Term

$$(\sin(3/2 \cdot \ln(2)))^2 + (\cos(3/2 \cdot \ln(2)))^2 = 1$$

nicht vereinfacht. Eine Vereinfachung zur Dezimalzahlendarstellung (gerundet) ist im **CAS**-Menü mit **approx Ans** jederzeit möglich. Oder:

simplify(Abs (cExpand	cExpand((1+i)^(2-3i))
$\frac{4}{e^{3\pi}} 4 \cdot \left(\cos\left(\frac{3 \cdot \ln(2)}{2}\right) \right)$	$\left \frac{2}{4} + 4 \cdot \left(\sin \left(\frac{3 \cdot \ln(2)}{2} \right) \right)^2 \right $
TENSICALCIEQUAI EGN IGRPHI D	TRNSICALCIEQUAI EGN ISRPHI D

Berechnung des Betrages (**Abs**) und Übergabe der exakten Darstellung mittels des Termspeichers z.B. in das **RUN·MAT**-Menü zur weiteren numerischen Auswertung.

== Termspeicher == f1:e(3×π/4)×(4×(cos f2: f3: f3: f3: f3:	Aufrufen aus Termspeicher f[1~20]: 1	e(3×π/4)×(4×(cos (3×1 n (2)/2))^2+4×(sin (3 ×1n (2)/2))^2)^(1/2) 21.101
f5: STOIRCLIfn		

Wir kommen nun zur allgemeinen Darstellung des k-ten Nebenwertes im **CAS**-Menü mit der symbolischen Variablen k.

Hier erweist sich das **CAS**-Menü als leistungsstark im symbolischen Rechnen, da sofort die gewünschte Normalform für das Ergebnis w_{μ} angezeigt wird!

cExpand(e((ln (1+i)+K	cExpand(e((ln (1+i)+K	cExpand(e((ln (1+i)+K	(1+i)+K×2πi)×(2-3i)))
$[3(2\pi K + \frac{\pi}{4})]$	$(a(a,,\pi) = 3 \cdot \ln(2))$	$3\left(2\pi K + \frac{\pi}{4}\right)$	(_σ (_σ ,π) 3·1n(2)) .
26 · · · · cos[2[2πκ	$2^{S[2[2\pi K + \frac{\pi}{4}] - \frac{2}{2}}$	-26 · · · · sin[2[2πε	$[2[2\pi K + \frac{\pi}{4}] - \frac{2}{2}] \cdot 1$
TRNSICAL CEQUAL EGN IGREMI D	TRNSICALCIEQUAI EGN IGRPHI D	TRNSICALCISQUAI EGN ISRPHI D	CLR SW RANS D

Wir lesen das korrekte Ergebnis wie folgt ab:

$$w_{k} = e^{(\ln(1+i) + k \cdot 2\pi i)(2-3i)}$$

= 2 \cdot e^{3\pi / 4 + k \cdot 6\pi i} \cdot (\cos(\pi / 2 - 3/2 \cdot \ln(2) + k \cdot 4\pi)) + i \cdot \sin(\pi / 2 - 3/2 \cdot \ln(2) + k \cdot 4\pi))

Somit gilt

$$\begin{aligned} & \operatorname{Re}(w_{k}) = r_{k} \cdot \cos(\theta_{k}) = 2 \cdot e^{3\pi/4 + k \cdot 6\pi i} \cdot \cos(\pi/2 - 3/2 \cdot \ln(2) + k \cdot 4\pi), \\ & \operatorname{Im}(w_{k}) = r_{k} \cdot \sin(\theta_{k}) = 2 \cdot e^{3\pi/4 + k \cdot 6\pi i} \cdot \sin(\pi/2 - 3/2 \cdot \ln(2) + k \cdot 4\pi), \\ & \operatorname{abs}(w_{k}) = r_{k} = 2 \cdot e^{3\pi/4 + k \cdot 6\pi i}, \\ & \operatorname{arg}(w_{k}) = \theta_{k} = \pi/2 - 3/2 \cdot \ln(2) \ (+ \ k \cdot 4\pi), \end{aligned}$$

d.h. $\theta_k = \pi/2 - 3/2 \cdot \ln(2)$ ist hier das (*k*-unabhängige) Hauptargument des *k*-ten Nebenwertes w_k . Damit hat das *m*-te Nebenargument im Blatt *k* den Wert

$$\theta_{\rm k} = \arg(w_{\rm k}) + m \cdot 2\pi = \pi/2 - 3/2 \cdot \ln(2) + m \cdot 2\pi.$$

Hiermit ist das umfangreiche Beispiel vollständig bearbeitet und alle Lösungen sind angegeben. Die für den Hauptwert zutreffenden Größen erhält man hier sofort, indem man k = 0setzt, d.h. es wäre in diesem Beispiel vorteilhafter gewesen, sofort den k-ten Nebenwert zu berechnen und gar nicht anfangs extra auf den Hauptwert einzugehen. Dann wäre auch das oben diskutierte Winkelproblem nicht aufgetreten.

Aufgaben:

- 8.1. Berechnen Sie die allgemeinen Potenzen mit Haupt- und Nebenwerten:
 - a) $w = (1-i)^{(1+i)}$ b) $w = 1^{i}$ c) $w = a^{z}$ mit. a = i und z = 1-4i.
- 8.2. Bestimmen Sie in der Aufgabe 8.1. für den Wert w_k im k-ten Blatt jeweils das Hauptargument und den Betrag.
- 8.3. Bestimmen Sie in der Aufgabe 8.1. für den Wert w_k im k-ten Blatt jeweils den Realund den Imaginärteil.
- 8.4. Berechnen Sie die allgemeine Potenz $w = (1+i)^{1/(A+i)}$ bzw. $w = (1+i)^{1/(1+Bi)}$ symbolisch mit Haupt- und Nebenwerten!

Die komplexen trigonometrischen Funktionen $w = \sin(z)$ und $w = \cos(z)$

Was den Schüler hier besonders interessiert:

Warum sind die trigonometrischen Funktionen w = sin(z) und w = cos(z) unbeschränkt?

Wir sehen uns den Betrag von sin(z) = sin(x+yi) im CAS-Menü etwas genauer an und erhalten zunächst mit **cExpand(...**:

d.h.

und mit cExpand(Abs(... schließlich

$$\frac{(\text{Expand}(\text{Abs}(\sin(X+i)))^2 \cdot (\sin(X))^2 + (\sin(X))^2 \cdot (\sin(X))^2 + (\sin(Y))^2 \cdot (\cos(X))^2 + (\sin(Y))^2 \cdot (\sin(X+yi))^2 + (\sin(Y))^2 \cdot (\cos(X))^2 + (\sin(Y))^2 \cdot (\sin(X+yi))^2 + (\sin(Y))^2 \cdot (\cos(X))^2 + (\sin(X+yi))^2 + (\sin(Y))^2 \cdot (\sin(X+yi))^2 + (\sin(Y))^2 \cdot (\sin(X+yi))^2 + (\sin(Y))^2 + (\sin(Y))^2 \cdot (\sin(X+yi))^2 + (\sin(Y))^2 + ($$

Die letzte Ungleichung ergibt sich aus der Abschätzung $\cosh(y) > |\sinh(y)|$, wie man graphisch leicht im **GRPH·TBL**-Menü sieht oder aus der Definition der hyperbolischen Funktionen im **CAS**-Menü erkennt:

Wir sehen uns die Lage der **cosh**-Funktion und des Betrages der **sinh**-Funktion zur anschaulichen Interpretation der Ungleichung im **GRPH**·**TBL**-Menü an:

Die eingangs gestellte Frage kann nunmehr klar beantwortet werden:

Der Betrag der komplexen **sin**-Funktion w = sin(x+yi) ist mindestens so groß wie der Betrag der (reellen) **sinh**-Funktion w = sinh(y) und diese kann wegen der Definition über **e**-Funktionen über alle Grenzen hinaus anwachsen.

Damit ist die komplexe **sin**-Funktion unbeschränkt, wenn der **Imaginärteil** y in **sin**(x+yi) über alle Grenzen anwächst.

Die Periodizität der **sin**-Funkton ist hier bezüglich des **Realteils** x gegeben.

Für die **cos**-Funktion w = cos(x+yi) erhalten wir entsprechend

		•	
cExpand(cos (X+Yi))	cExpand(cos (X+Yi))	cExpand(Abs (cos (X+Y	Abs (cos (X+Yi)))
cosh(Y).cos(X)-sinh(Y	$X)-sinh(Y)\cdot sin(X)\cdot i$	(cosh(Y)) ² .(cos(X)) ² +	•(sinh(Y)) ² •(sin(X)) ²
•	•	•	4
TRNSICALCIEQUAI CAN IGRPHI D	TRNSICAL CEQUAL CAN IGRPHI D	CO LABS X ! ISI9N HYP FMEM	CLR SW IRANS D

d.h.

$\cos(x+yi) = \cosh(y) \cdot \cos(x) - i \cdot \sinh(y) \cdot \sin(x)$

und

$$|\cos(x+yi)| = \sqrt{\cosh^2(y) \cdot \cos^2(x) + \sinh^2(y) \cdot \sin^2(x)}$$
$$\geq \sqrt{\sinh^2(y) \cdot \left(\cos^2(x) + \sin^2(x)\right)} = |\sinh(y)|$$

Damit ergibt sich für die komplexe **cos**-Funktion die gleiche Argumentation hinsichtlich der Unbeschränktheit.

Die nächste interessante Frage ist die Gültigkeit des "trigonometrischen Pythagoras", der im Reellen unabhängig vom Winkel θ (im Bogenmaß) wie folgt lautet: $\sin^2(\theta) + \cos^2(\theta) = 1$. Im Komplexen erhalten wir hier im **CAS**-Menü für jede Zahl z = x + yi das gleiche Ergebnis:

 $\sin^{2}(x+yi) + \cos^{2}(x+yi) = \cosh^{2}(y) - \sinh^{2}(y) = 1$

Damit hat die Unbeschränktheit der komplexen trigonometrischen Funktionen keinen Einfluß auf den "trigonometrischen Pythagoras".

Die erhaltene Darstellung $\cosh^2(y) - \sinh^2(y) = 1$ heißt auch "hyperbolischer Pythagoras":

Während der "trigonometrische Pythagoras" $\sin^2(\theta) + \cos^2(\theta) = 1$ im CAS-Menü erkannt und mit simplify(... zu 1 umgeformt werden kann:

erkennt das **CAS**-Menü den "hyperbolischen Pythagoras" im symbolischen Rechnen nicht mehr und man erhält z.B. nur die Umformung $\sin^2(\theta i) + \cos^2(\theta i) = \cosh^2(\theta) - \sinh^2(\theta)$:

Obwohl das **CAS**-Menü den "hyperbolischen Pythagoras" offenbar nicht kennt, kann die Ausgangsaufgabe durch unmittelbare Umformung in **e**-Funktionen doch noch korrekt vereinfacht werden, indem man den Zwischenschritt über die hyperbolischen Funktionen unterbindet. Es gelten bekanntlich für jedes z = x + yi die Definitionen

$$\sin(z) = 1/i \cdot \sinh(iz) = (e^{iz} - e^{-iz})/(2i)$$
 und $\cos(z) = \cosh(iz) = (e^{iz} + e^{-iz})/2$

Mit dem Befehl **trigToExp** kann der Zwischenschritt über die hyperbolischen Funktionen unterbunden und sofort in die exponentielle Darstellung umgeformt werden. Diese liefert dann mit **simplify(...** das gewünschte symbolische und absolut korrekte Ergebnis **1**:

Angle :Rad Answer Type :Complex Display :Norm2 FiXlSc: Norm	trigToEzp((sin (X+Yi)) (e [×] i-Y ₊ e ^{-×} i+Y) ² -(e [×] i-' 4 ► TRNSICALCIEQUALEGNISEPH ▷	+ <u>Yi))²+(cos (X+Yi))²)</u> Y) ² -(e ^X i-Y ₋ e ^{-X} i+Y) ² & 4 CLRI SW IRANS	simplify(trigToExp((s 1 TRNSICALCEQUALEGN GREAT D]
Nachweis des "hyper- bolischen Pythagoras" über den Befehl trigToExp :	$\frac{(\text{trigToEzp(cosh V))}^{2}}{(e^{V}+e^{-V})^{2}} - \frac{(e^{V}-e^{-V})^{2}}{4}$ $\frac{(e^{V}+e^{-V})^{2}}{4} - \frac{(e^{V}-e^{-V})^{2}}{4}$ TENSICALCIEQUAL GAN ISEPHILIS	$\frac{-(\text{trigToEzp(sinh Y)})^2}{(e^{Y}+e^{-Y})^2} - \frac{(e^{Y}-e^{-Y})^2}{4}$ $\frac{(e^{Y}+e^{-Y})^2}{4} = \frac{(e^{Y}-e^{-Y})^2}{4}$ CLR SW IRANS	simplify(Ans) 1 TENSICALCEQUALERN GRPH 5

Weitere Beispiele zum symbolischen Rechnen mit dem trigToExp - Befehl:

trisToEzp((sin (θi)) ² (e ^θ +e ^{-θ}) ² -(e ^θ -e ^{-θ}) ² 4 TRHSTCALCEQUALEGN (SRPHL D	$\frac{(\theta \mathbf{i})^{2} + (\cos (\theta \mathbf{i}))^{2}}{(e^{\theta} + e^{-\theta})^{2} - (e^{\theta} - e^{-\theta})^{2}}{4}$ $\frac{(\mathbf{LR}) \text{ SW (RAMS)}}{\mathbf{CLR}}$	Umformung von sin²(exponentielle Darste	θi) + cos²(θi) in die Ilung mit trigToExp
simplify(trigToExp((s 1 TEMS[CALCEQUA] eqn (SEPH) p]	(sin (ði))²+(cos (ði) 1 CLRISWIRANS [▷]	(81))2+(cos (81))2)) 1 [[[[[[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	Vollständige Verein- fachung mit den Be- fehlen simplify und trigToExp
trisToEzp((sin (10+10 (e ¹⁰⁻¹⁰ i+e ⁻¹⁰⁺¹⁰ i) ² _(. 4	i))²+(cos (10+10i))²) -e ¹⁰⁻¹⁰ i _{+e} -10+10i) ² ≪ CLR SW BANS	Simplify(trigToEzp((s 1 TRNSICALCEQUALEGN MARPHID	Vollständige Verein- fachung von $sin^{2}(z) + cos^{2}(z)$ mit $z = 10 + 10 i$

Eine kleine Geschichte über numerische Beispiele im **CAS**-Menü mit **approx** bzw. im **RUN·MAT**-Menü mit einer Aufgabe und den etwa drei gleichen Antworten:

Wir untersuchen den "trigonometrischen Pythagoras" $\sin^2(\theta) + \cos^2(\theta) = 1$ für $\theta = 10+10i$ und betrachten dazu folgende Bildergeschichte. Zuerst werden im **CAS**-Menü alle Speicher gelöscht und die Anzeige im **SET UP** voreingestellt:

Schließlich wird die Zahl 10+10i zunächst in der Variablen θ zwischengespeichert, dann zur Kontrolle der Term $\sin^2(\theta) + \cos^2(\theta)$ aufgerufen und nun approx $(\sin^2(\theta) + \cos^2(\theta))$ gerechnet. Erst hier ergibt sich im numerischen Rechnen das absolut korrekte Ergebnis:

10+10i≯8	(sin 0)2+(cos 0)2	(sin 8)²+(cos 8)²
10+10i	(cos(10+10i)) ² +(sin(10	0i))²+(sin(10+10i))²
TRNSICALCIEQUAI egn (GRPHI D)	TRNSICAL CIEQUAL GAN ISRPHI D	TENSICAL CIEQUAI EGN ISREHI D
approz ((sin 0)²+(cos	((sin 0)2+(cos 0)2)	Numerische Berechnung von
1	1	sin ² (θ) + cos ² (θ) im CAS-Menü
TENSICALCIEQUALEAN BREAL D	TRHSICALCEQUALEGN (SRPHL D)	mittels dem approx-Befehl

Unsere kleine Geschichte endet damit, dass der Term $\sin^2(10+10i) + \cos^2(10+10i)$ über den Termspeicher in das **RUN·MAT**-Menü übertragen und dort erneut ausgewertet wird:

Was lehrt uns diese Geschichte?

Während das symbolische Rechnen absolut exakte Termumformungen anbietet (im Rahmen der Leistungsfähigkeit des **CAS**-Menüs) sind numerische Darstellungen im Rahmen der Rechengenauigkeit stets als mehr oder weniger korrekte Näherungswerte für einen gesuchten Zahlenwert zu betrachten.

Damit wird verdeutlicht, dass jedes elektronische Rechenhilfsmittel - vom Taschenrechner bis hin zum PC - stets verantwortungsvoll gehandhabt werden muß und **die Verantwortung für die Korrektheit des Ergebnisses** stets beim Nutzer liegt und nicht auf das Rechenhilfsmittel abgeschoben werden kann!

Für den Schüler bedeutet das, stets zu überlegen, ob das im Display angezeigte Ergebnis tatsächlich dem erwarteten Ergebnis für die betrachtete Aufgabenstellung entspricht. Hierbei sind zusätzlich noch die richtigen Voreinstellungen im menübezogenen **SET UP** zu beachten und **Eingabefehler** zu vermeiden, die ein erwartetes Ergebnis noch zusätzlich verfälschen können!

Aufgaben:

- 9.1. Untersuchen Sie im CAS-Menü symbolisch folgenden Term:
 - a) $sin(re^{\theta i})$ (mit cExpand(... untersuchen)
 - b) **sin(***r***e**^{*θi*}**)** (mit **trigToExp(...** untersuchen)
 - c) $sin(re^{\theta i})$ (mit expToTrig(... untersuchen)
- 9.2. Berechnen Sie sin²(100+100*i*)+cos²(100+100*i*) sowohl exakt im CAS-Menü als auch näherungsweise im RUN·MAT-Menü und vergleichen Sie die Ergebnisse!
- 9.3. Berechnen Sie folgende Werte möglichst exakt:

a) $\sin(\pi/2+i)$ b) $\cos(\pi/2+i)$ c) $\sin(\pi/2+i\ln 3)$ d) $\cos(\pi/2+i\ln 3)$.

- 9.4. Überprüfen Sie folgende Formeln im **CAS**-Menü:
 - a) $\sin(z) = 1/i \cdot \sinh(iz)$ b) $\sin(z) = (e^{iz} e^{-iz})/(2i)$
 - c) $\cos(z) = \cosh(iz)$ d) $\cos(z) = (e^{iz} + e^{-iz})/2$
- 9.5. Berechnen Sie sin $(100+100 i) \cdot \cos(100+100 i)$ möglichst effektiv!
- 9.6. Zerlegen Sie im CAS-Menü tan(x+yi) in seinen Real- und Imaginärteil.

Bemerkungen zu den komplexen Arcusfunktionen

Was den Schüler hier besonders interessiert:

Wie ist die Umkehrabbildung der nicht eineindeutigen sin-Funktion definiert?

Auf der Tastatur findet man als Zweitfunktion über den \sin -, \cos - und \tan -Tasten die Umkehrabbildungen $\arcsin(z)$, $\arccos(z)$ und $\arctan(z)$, die hier symbolisch mit $\sin^{-1}(z)$, $\cos^{-1}(z)$ und $\tan^{-1}(z)$ bezeichnet sind: SHIFT $\sin^{-1}(z)$, SHIFT $\cos^{-1}(z)$, SHIFT $\tan^{-1}(z)$, und nicht mit der Kehrwertbildung $1/\sin(z)$, $1/\cos(z)$ und $1/\tan(z)$ verwechselt werden dürfen!

Wir probieren die Umkehrabbildung arcsin(z) einfach einmal im $RUN \cdot MAT$ -Menü aus, nachdem im dortigen SET UP wieder Complex Mode: a+bi und Bogenmaß (Rad) eingestellt sind:

z.B. erkennt man im RUN·MAT-Menü die Ergebnisse:

$$\arcsin(5/3) = 1,5708 - 1,0986i$$
, $\arcsin(5/3 + 20\pi) = 1,5708 - 4,859i$

usw.

Wir sehen uns die Formelstruktur im **CAS**-Menü an, zunächst die Fehlermeldung bei unkorrekter Voreinstellung:

Im letzten Bild ist das exakte Ergebnis erkennbar:

Für den komplexen Winkel $\theta = \pi/2 - i \cdot \ln 3$ gilt $\sin(\theta) = 5/3$, umgekehrt erhält man

```
\arcsin(5/3) = \pi/2 - i \cdot \ln 3 = 1,5708 - 1,0986i
```

Auf Grund der Periodizität der **sin**-Funktion kann das zuletzt erhaltene Ergebnis im Realteil mit $k \cdot 2\pi$, $k = \pm 1, \pm 2, ...$, periodisch fortgesetzt werden:

 $\arcsin(5/3) + k \cdot 2\pi = \pi/2 - i \cdot \ln 3 + k \cdot 2\pi = 1,5708 - 1,0986i + k \cdot 2\pi$

und man erhält weitere Lösungen der Gleichung $sin(\theta) = 5/3 = 1,6667$: sin (π/2-iln 3) sin (π/2+4π-iln 3) i.6667 sin (π/2-20π-iln 3) i.6667 LISTIMATICPLXICALCHNUM [D]

Genau gilt hier folgende Festlegung:

Die arcsin-Funktion $\theta = \arcsin(z)$ berechnet den Hauptwert für einen möglichen Winkel θ mit der Eigenschaft $\sin(\theta) = z$, wobei gilt: $-\pi/2 \leq \operatorname{Re}(\theta) \leq \pi/2$.

Damit kann die eingangs gestellte Frage beantwortet werden:

Genau wie im Reellen, wenn man den Imaginärteil außer acht läßt, liegt auch im Komplexen der (Haupt-)Wertebereich der **arcsin**-Funktion in einem (senkrechten) **Parallelstreifen** mit der Eigenschaft:

$$-\pi/2 \leq \operatorname{Re}(\theta) \leq \pi/2$$
 und $-\infty \leq \operatorname{Im}(\theta) \leq \infty$

Die entsprechende Aussage gilt für die arccos-Funktion mit dem (Haupt-)Wertebereich:

 $0 \leq \operatorname{Re}(\theta) \leq \pi$ und $-\infty \leq \operatorname{Im}(\theta) \leq \infty$

Man erkennt spätestens an dieser Stelle, dass es sinnvoll ist, im Bogenmaß zu rechnen, da eine Altgradeinstellung im **SET UP** zu nichtinterpretierbaren komplexen Zahlenwerten führt!

Die anschließende Bilderserie zeigt die komplizierte Berechnungsvorschrift für den Term arcsin(x+yi):

Im mittleren Teil des Formelterms (**arctan**-Funktion eines Doppelbruches) wurde das Taschenrechnerbild auch nach unten gerollt, um in die Formelstruktur vollen Einblick zu erhalten. Wir erkennen folgende interessante Formelstruktur:

$$\arcsin(x+yi) = -i/2 \cdot \ln(B^2+A^2) - \arctan(A/B) + \pi/2 \cdot \operatorname{sgn}(B)$$

mit

und

$$B = x - \sqrt{2(x^2 - y^2 + \sqrt{4x^2y^2 + (-x^2 + y^2 + 1)^2} - 1) \cdot \text{sgn}(x \cdot y)/2}$$

$$A = -y + \sqrt{2(-x^2 + y^2 + \sqrt{4x^2y^2 + (-x^2 + y^2 + 1)^2} + 1)/2}$$

Hintergrund zu dieser Formel ist der bekannte Zusammenhang der **arcsin**-Funktion zur **In**-Funktion:

$$\arcsin(x+yi) = -i \ln\left(i(x+yi) + \sqrt{1-(x+yi)^2}\right)$$

Man berechnet im CAS-Menü unschwer die Hauptwurzel

$$\sqrt{1 - (x + yi)^2} = -i\sqrt{2(x^2 - y^2 + \sqrt{4x^2y^2 + (-x^2 + y^2 + 1)^2} - 1)} \cdot \operatorname{sgn}(x \cdot y)/2$$
$$+ \sqrt{2(-x^2 + y^2 + \sqrt{4x^2y^2 + (-x^2 + y^2 + 1)^2} + 1)}/2$$

d.h.

und

$$A = \operatorname{Re}\left(i(x+yi) + \sqrt{1 - (x+yi)^2}\right)$$
$$B = \operatorname{Im}\left(i(x+yi) + \sqrt{1 - (x+yi)^2}\right)$$

Schließlich gilt

$$-i \cdot \ln(A+Bi) = -i \cdot (\ln \sqrt{A^2+B^2} + i \arg(A+Bi))$$

mit

 $arg(A+Bi) = - arctan(A/B) + \pi/2 \cdot sgn(B)$

Damit ist das Geheimnis zur Berechnung der Zahl arcsin(x+yi) gelüftet und bereits früher dargestellte Formelstrukturen sind in Einzeltermen wieder zu erkennen!

Aufgaben:

10.1. Überprüfen Sie die auf dieser Seite dargestellten Formelterme im **CAS**-Menü!

10.2. Lösen Sie folgende Gleichungen: a) $\cos(z) = 5/3$ b) $\sin(z) = -5/3$.

10.3. Berechnen Sie für $z = -2 + \sqrt{2}i$ die Werte a) arccos (z) b) arcsin (z).

Speziell ergibt sich mit x = 0: arcsin $(yi) = i \cdot \operatorname{arsinh}(y)$

Die hyperbolischen Funktionen im komplexen Zahlenbereich

Die hyperbolischen Funktionen sind dem Grunde nach lediglich Abkürzungen für Formelterme mit komplexen **e**-Funktionen und demzufolge wie die **e**-Funktionen periodisch:

$$w = \cosh(z) = (e^{z} + e^{-z})/2, w = \sinh(z) = (e^{z} - e^{-z})/2$$

und

 $w = \tanh(z) = \sinh(z) / \cosh(z)$

Die Umkehrfunktionen (Areafunktionen) dazu sind

$$z = \operatorname{arcosh}(w) = \ln\left(w + \sqrt{w^2 - 1}\right)$$
(Hauptwerte),
 $z = \operatorname{arcosh}(w) = -\ln\left(w + \sqrt{w^2 - 1}\right)$ (Nebenwerte)

sowie

$$z = \operatorname{arsinh}(w) = \ln(w + \sqrt{w^2 + 1})$$
 und $z = \operatorname{artanh}(w) = 1/2 \ln((w + 1)/(w - 1))$

Die folgenden Bilder geben einen Einblick in die algebraische Formelstruktur der **artanh**-Funktion, wobei wieder zu beachten ist, dass die Umkehrfunktionen mit **tanh**⁻¹ bzw.

cosh⁻¹ oder sinh⁻¹ statt mit artanh bzw. arcosh oder arsinh bezeichnet werden!

$\frac{\text{cEzpand(tanh-1 (V+W1))}}{\frac{\ln((V+1)^2+W^2)}{2} - \frac{\ln(W^2+W^2)}{2}}{2}$	$\frac{cEzPand(tanh^{-1} (U+Wi))}{2} - \frac{\ln(W^2 + (-U+1)^2)}{2} + (-t)$	$\frac{cExpand(tanh^{-1} (V+Wi))}{\frac{2}{W}} \left(-tan^{-1} \left(\frac{V+1}{W} \right) + tan^{-1} \left(\frac{V}{W} \right) \right)$	cExpand(tanh ⁻ (V+Wi))) h ⁻ (<u>V−1</u>)+π∙signum(W)) i ¶2
CO TABS X 1 ISISN HVP FMEM	CO TABS X ! ISI9N HYP FMEM	CO TABS X ! ISISHTHYP FMEM	CO LABS X ! ISI9n HVP FMEM

Konkrete Beispiele in Dezimalzahlendarstellung (gerundeter Zahlenwert) im **RUN · MAT**-Menü bzw. in exakter Darstellung im **CAS**-Menü:

(1+i) 0.8337+0.9889i cosh $\cosh(1+i) = 0.8337 + 0.9889i = \cos(1)\cosh(1) + \sin(1)\sinh(1)i$ (1+i) 0.6350+1.2985i sinh tanh (111) 1.0839+0.2718i $\sinh(1+i) = 0.6350 + 1.2985i = \cos(1)\sinh(1) + \sin(1)\cosh(1)i$ PROBINYP IANGLISTAT IFMEM <u>cExpand(cosh (1+i))</u> cExpand(cosh (1+i)) cExpand(sinh (1+i)) cExpand(sinh (1+i)) cos(1) cosh(1)+sin(1) [1)+sin(1) sinh(1) i cos(1) • sinh(1) + sin(1) 1) + sin(1) • cosh(1) • i Þ la Þ e. TRNSICALCIEQUALEGN IGRPHI D CO LABS | X ! ISI9N HYP FMEM | CO LABS | X ! ISI9N HYP FMEM

und schließlich:

```
tanh(1+i) = 1,0839 + 0,2718i = 
(sinh(1)cosh(1) + sin(1)cos(1)i)/
(sinh<sup>2</sup>(1) + cos<sup>2</sup>(1))
```

Nun folgen konkrete Beispiele in Dezimalzahlendarstellung (gerundeter Zahlenwert) im **RUN · MAT**-Menü bzw. in exakter Darstellung im **CAS**-Menü für die Umkehrfunktionen:

Auf die formelmäßige Niederschrift der jeweiligen exakten Darstellungen wurde an dieser Stelle verzichtet. Es bleibt dem Leser überlassen, dies in ausgewählten Beispielen vom Taschenrechner-Display abzuschreiben, sofern dies von Interesse sein sollte.

Abschließend erinnern wir an die nicht vorhandene Eineindeutigkeit der **cosh**-Funktion. Die **cosh**-Funktion ist bekanntlich eine gerade Funktion, d.h. **cosh**(z)=**cosh**(-z) für alle z. Deshalb hatte die oben betrachtete Gleichung w = cosh(z) auch zwei Lösungen und es wurde bei der Umkehrfunktion zwischen Haupt- und Nebenwerten unterschieden. Dies alles gilt nicht nur im Reellen sondern auch im Komplexen unverändert!

cosh (1+i) 0.8337+0.9889i cosh (-1-i) 0.8337+0.9889i	cosh (1-i) 0.8337-0.9889i cosh (-1+i) 0.8337-0.9889i
cosh (1+1)/cosh (-1-1) simplify(cExpand(cosh cosh(1+i) cosh(-1-i)	cosh (-1+i)/cosh (1-i) simplify(cExpand(cosh) cosh(-1+i) 1 cosh(1-i) 1
CO LANS 2 1 ISIGN HYP FMEM TENSICAL (FOUR) AGN (SEPHILID	TENSICAL GEOUAL AGN ISRPHILD

Komplexe Polynome, deren Nullstellen und Faktorisierung in Linearfaktoren

Wir erinnern uns zunächst an den **Fundamentalsatz der Algebra**, der aussagt, dass ein Polynom n-ten Grades genau n Nullstellen besitzt, wenn man die möglichen Vielfachheiten der Nullstellen beachtet. Über jede dieser Nullstellen des Polynoms ist dann ein Linearfaktor festgelegt und es gilt insbesondere:

$$p_n(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 = a_n (z - z_0)(z - z_1) \dots (z - z_{n-1})$$

Sind darüber hinaus alle Koeffizienten reell, treten komplexe Nullstellen nur paarweise als komplexe und konjugiert komplexe Zahlen z_k und \overline{z}_k auf und es gilt: $(z - z_k)(z - \overline{z}_k)$ ist ein quadratisches Polynom mit reellen Koeffizienten.

Beispiel:

Das Polynom $\mathbf{p}_6(z) = z^6 \cdot \mathbf{1}$ mit reellen Koeffizienten ist in seine Linearfaktoren zu zerlegen. Anschließend ist eine Faktorisierung mit Linearfaktoren und quadratischen Faktoren anzugeben, die ausschließlich reelle Koeffizienten enthalten.

Lösung:

Im **SET UP** des **CAS**-Menüs sei zunächst der **Answer Type: Real** voreingestellt. Dann erhalten wir sowohl mit dem **factor(...** - Befehl als auch mit dem **rFactor(...** - Befehl das gleiche reelle Ergebnis:

 $P_6(z) = z^6 - 1 = (z - 1)(z + 1)(z^2 - z + 1)(z^2 + z + 1)$

Mit der Voreinstellung **Answer Type: Complex** zerlegt der **Root-Factor-Befehl** unter Ausnutzung aller komplexen Haupt- und Nebenwurzeln das Polynom in seine Linearfaktoren:

Angle :Rad Answer Type :Complex Display :Fix4	$\frac{rFactor(Z^{6}-1)}{(Z-1)(Z+1)\left(Z+\frac{-\sqrt{3}i-1}{2}\right)\left(Z+\frac{-\sqrt{3}i-1}{2}\right)}$	$\frac{\operatorname{rFactor}(Z^{6}-1)}{\left(Z+\frac{-\sqrt{3}i-1}{2}\right)\left(Z+\frac{-\sqrt{3}i+1}{2}\right)}$	$\frac{rFactor(\mathbb{Z}^{6-1})}{\frac{t_{1}}{2}} \Big \Big(Z + \frac{\sqrt{3}\mathbf{i} + 1}{2} \Big) \Big \Big \Big \mathbf{Z} + \frac{\sqrt{3}\mathbf{i} + 1}{2} \Big \Big \Big \Big \mathbf{Z} + \frac{\sqrt{3}\mathbf{i} + 1}{2} \Big \Big \Big \Big \mathbf{Z} + \frac{\sqrt{3}\mathbf{i} + 1}{2} \Big \Big \Big \mathbf{Z} + \frac{\sqrt{3}\mathbf{i} + 1}{2} \Big \Big \Big \mathbf{Z} + \frac{\sqrt{3}\mathbf{i} + 1}{2} \Big $
Realicnix	TRNS CALCEQUAL CAN IGRPHI D	TRNS ICALCIEQUAL CAN IGRPHI D	TRNSICALCIEQUAL CAN IGRPHI D

$$p_{6}(z) = z^{6} - 1 = (z - 1)(z - (-1))(z - (1 + \sqrt{3})/2)(z - (-1 + \sqrt{3})/2)(z - (1 - \sqrt{3})/2)(z - (-1 - \sqrt{3})/2)$$

= (z - z₀)(z - z₃)(z - z₁)(z - z₂)(z - z₅)(z - z₄)

d.h.

$$z_0 = 1, z_1 = (1 + \sqrt{3})/2, z_2 = (-1 + \sqrt{3})/2, z_3 = -1, z_4 = (-1 - \sqrt{3})/2 = \overline{z}_2, z_5 = (1 - \sqrt{3})/2 = \overline{z}_1.$$

Die Indizierung der z_k entspricht hierbei dem Index des Winkelraumes \mathbf{D}_k , in dem z_k liegt.

Das gerade betrachtete Beispiel verdeutlicht zwei Effekte der Displayanzeige:

- 1. Jeder Linearfaktor $(z z_k)$ wird in der Form $(z + (-z_k))$ angezeigt, so dass beim Ablesen der Nullstelle das **Vorzeichen geändert** werden muß.
- 2. Die **Reihenfolge der Faktoren** entspricht nicht unbedingt der im Kapitel 5 eingeführten Indizierung der Haupt- und Nebenwurzeln.

Schließlich darf nicht unerwähnt bleiben:

3. Nicht jede Faktorisierung gelingt im **CAS**-Menü, wenn die Nullstellen z.B. nicht exakt darstellbar sind oder die Hintergrundprogrammierung des Taschenrechners überfordert wird (z.B. Faktorisierung von $p^3(z) = z^3 - 3z^2 + 7$). In diesem Falle können die (komplexen) Nullstellen unkompliziert im **EQUA**-Menü aus der **Nullstellengleichung** des Polynoms ermittelt werden.

Wir bleiben beim eingangs betrachteten Beispiel und lösen die Nullstellengleichung des Polynoms mit dem **solve(...** - Befehl exakt im **CAS**-Menü und erhalten die bereits oben angegebenen Nullstellen in der Reihenfolge z_3 , z_0 , $z_4 = \overline{z_2}$, z_2 , $z_5 = \overline{z_1}$ und z_1 :

Mit dem **expand(...** -Befehl wird kontrolliert, dass die Linearfaktoren $(z - z_k)(z - \overline{z}_k)$ in der Tat ein reelles quadratisches Polynom ergeben:

expand((Z-(1+i))2)(Z- Z ² -2\2Z+4	<u>Z-(1+i)42)(Z-(1-i)42)</u> Z ² -242Z+4	<u>expand((Z-(-1+i))2)(Z</u> Z ² +2√ZZ+4	<u>-1+i)42)(Z-(-1-i)42))</u> Z ² +242Z+4
TRHSICAL CIEQUAL EGIN IGREMI D	CLR SW RANS D	TRNS ICAL CIEQUAL EGIN IGREMI D	TRNSICAL CIEQUAL CAN IGRPHI D

Wir begeben uns jetzt in das **EQUA**-Menü, um im hier betrachteten Beispiel die Nullstellengleichung des betrachteten Polynoms zu lösen. Wir haben dort im **SET UP** verschiedene Möglichkeiten der komplexen Zahlendarstellung der gefundenen Nullstellen. Im Eingangsfenster des **EQUA**-Menüs bedeuten:

F1: (eindeutig lösbares) lineares Gleichungssystem (mehrere Gleichungen "gleichzeitig")

F2: Nullstellengleichung zu einem (komplexen) Polynom (Gleichungstyp "polynominal")F3: (reelle) Lösung sonstiger nichtlinearer Einzelgleichungen

Vorab ein provozierter Fehlversuch, über die **F3**-Auswahl eine nichtreell lösbare Gleichung zu lösen. Bei vorgegebenem komplexen Startwert singnalsiert der Recher einen Mathe-Fehler (hier bedeutet dies: kein zulässiger Startwert), dann scheitert der Rechner bei der Suche nach einer (reellen) Lösung.

Gleichuns Typ wählen F1:Gleichzeitis F2:Polynominal F3:Lösuns SIMLFOLMSOLW	Func Type :Y= Angle :Rad Complex Modela+bi Display :Fix4 Realla-bare*ea	E9:2^4+16=0 2=i Lower=-9e+99 Upper=9e+99	EFehler Ma-Fehler Drücken Sie:[ESC]
Eq: 2^4+16=0 2=1 Lower=-9e+99 Upper=9e+99 RCLIDEUA	Eq:2^4+16=0 2=100.565836 Lft=1.0228e+08 Rgt=0 Ern. vers. :[EXE] REPTI	In jedem Fall muß der N zeigen des Rechners kor und entscheiden, ob ein angezeigt wird!	utzer die Ergebnisan- rekt zu deuten verstehen brauchbares Ergebnis

Man beachte in der Displayanzeige die umgekehrte Indizierung der Koeffizienten, z.B. a_0 als Koeffizient für x^n . Ergebnisanzeige in exponentieller Darstellung und Winkelmodus Altgrad (**SET UP**):

Für das zuletzt betrachtete Polynom 5. Grades gelingt die vollständige Faktorisierung im **CAS**-Menü nicht:

Angle :Deg Answer Type :Complex Display :Fix4	rFactor(Z^5+1) (Z+1)(Z ⁴ -Z ³ +Z ² -Z+1)
Deglaal	TENSICAL CIEQUAL CAN IGRPHI D

Jedoch gelingt es hier wieder, mit dem **solve(...** -Befehl die exakte arithmetische Darstellung der Wurzelwerte in der Reihenfolge $z_2 = -1$, z_3 , z_1 , z_4 , z_6 anzugeben:

	—		
solve(Z^5+1=0,Z)	solve(Z^5+1=0,Z)	solve(Z^5+1=0,Z)	solve(Z^5+1=0,Z)
Z=-1 0	$A = \frac{1}{4} + \frac{1}{4} = \frac{1}{4} + \frac{1}{4} = 0$	■ ^{4540+101 40⁺¹}	≜ –J–2√5+10i.√5.1 ≜_
-12.5+10; .5 1			$\mu = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{4}$
$Z = \frac{-\sqrt{2}\sqrt{3}+101}{4} - \frac{\sqrt{3}}{4} + \frac{1}{4}$	$7 = \frac{\sqrt{2}\sqrt{5} + 10i}{\sqrt{5} + 1}$	L -J-2J5+10i J5 1	
	► 4 4 4 ¹	$Z = \frac{1}{4} \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 1$	$Z = \frac{\sqrt{-2}\sqrt{5} + 101}{4} + \frac{\sqrt{5}}{4} + \frac{1}{4}$
<u>▼_1215+10i</u> 15,1 ▼_	▼25+10+ 5 + ▼	T T	<u> 4 4 4 </u>
TRNSICALCIEQUAI EAN ISRPHIL D	TRNS ICALCIEQUAL CAN IGRPHI D	TRNSICALCIEQUAI E9N IGRPHI D	TRNSICAL CIEQUAI EGIN IGRPHI D

Vereinfachung der Einzelergebnisse (Gleichungen 2 bis 5):

simplify(eqn(2))	simplify(eqn(3))	simplify(eqn(4))	simplify(eqn(5))
	_ √2√5+10i−√5+1	<u>- 2,5+10</u> i+,5+1 _	_ √-2√5+10i+√5+1 _
<u> </u>	2 = 4	4 ² 4	2= <u> </u>
TRNSICALCIEQUAL CAN IGRPHI D	CLR SW RANS D	CLR SW RANS D	CLR SW RANS D

Vergleich mit der trigonometrischen Darstellung (Winkelmodus auf Altgrad eingestellt!):

simplify(cos -√2√5+10i-√5+1 4	-108+isi	<u>simplify(cos</u> <u>2,5+10</u> i-,5+1 4	108 +i sin	<u>simplify(cos</u> -√-2√5+10i+√5+ 4	<u>-36+isin</u> <u>1</u>	simplify(cos 36+isin <u>-2√5+10</u> i+√5+1 4
CLR SW IRANS	^Z 3	CLR SW RANS	^ℤ 1	CLR SW IRANS	^z 4	Z _O TRNS CALCEQUALE ON IGRENIED

Mittels dieser Wurzelwerte (komplexer und konjugiert komplexer Wurzelwert) können dann die entsprechenden Linearfaktoren $(z - z_k)(z - \overline{z}_k)$ zu den gesuchten quadratischen Faktoren mit reellen Koeffizienten ausmultipliziert werden, indem folgende kombinierte Befehle angewendet werden:

collect(simplify((Z-eqn(5))(Z-eqn(4))),Z) bzw. collect(simplify((Z-eqn(3))(Z-eqn(2))),Z)

ollect(simplify((Z-e	ean(5))(Z-ean(4))),Z)	collect(simplify	/((Z−e	ean(3))(Z-ean(2))),Z)
$(7^{2}+(-\sqrt{5},1)^{7+1})$	$a_{=7}^{2} \left(\frac{-\sqrt{5}}{1} \right)_{7+1}$	па	$a_{=7}^{2} \left(\frac{\sqrt{5}}{1} \right)_{7+1}$	m	$a_{=7}^{2} \left(\frac{\sqrt{5}}{1} \right)_{7+1}$	m
- (2 2) ² ···			<u></u>	- uu	2) ² (2 2) ²	

Damit lautet die reelle Faktorisierung $z^5+1 = (z+1)(z^2-(\sqrt{5}+1)/2z+1)(z^2+(\sqrt{5}-1)/2z+1)$.

Hinweis: Anwendung der Faktorisierung bei der Partialbruchzerlegung (Integration) gebrochen rationaler Funktionen.

Aufgaben:

- 12.1. Untersuchen Sie die Nullstellen des Polynoms $p_3(z) = z^3 3z^2 7$ und geben Sie eine möglichst genaue Zerlegung in Linearfaktoren an.
- 12.2. Zerlegen Sie das Polynom $p_4(z) = z^4 + 16$ in komplexe Linearfaktoren und geben Sie anschließend eine reelle Faktorisierung an!
- 12.3. Faktorisieren Sie das Polynom $p_7(z) = z^7 + 3z^6 + 5z^5 + 3z^4 z^3 5z^2 4z 2$.
- 12.4. Welches reelle Polynom $p_6(z)$ mit besitzt die Nullstellen $2e^{i36^\circ}$, $3e^{i45^\circ}$ und $0.5e^{i60^\circ}$?

Komplexe Fourierreihen und Integration (Parameterintegrale)

Eine wichtige Anwendung der Integration im **CAS**-Menü besteht in der exakten Berechnung von komplexen Fourierkoeffizienten, das hier am Beispiel erläutert werden soll.

Beispiel:

Die Einweggleichrichtung sei durch die Funktion $y=f(x)=h \cdot (\cos x + |\cos x|)/2$ gegeben. Die Periodenlänge **T** beträgt **T** = 2π . Die Amplitude h > 0 sei fest vorgegeben. Wir sehen uns zuerst eine Graphik im **GRPH** · **TBL**-Menü an, nachdem das **SET UP** entsprechend eingestellt (Bogenmaß!) und das **Betrachtungsfenster** eingerichtet sind:

Die komplexe Fourierreihe lautet $f(x) = s(x) = \sum_{k=-\infty}^{k=\infty} c_k \cdot e^{ikx\omega}$ mit $\omega = 2\pi/T = 1$,

$$c_k = 1/T \int_{-T/2}^{T/2} f(x) e^{-ikx\omega} dx = 1/(2\pi) \int_{-\pi/2}^{\pi/2} h \cdot \cos x \cdot e^{-ikx} dx$$

Mit dem **expToTrig(...** -Befehl im Integranden erhält man ein unerwartet einfaches Ergebnis, das mit **simplify(Ans)** noch zusammengefaßt werden kann:

J(expToTris((Hcos X)e	Х)),Х,5л,.5л)/(2л)
$\cos\left(\frac{\pi K}{2}\right) \cdot H \cos\left(\frac{\pi K}{2}\right) \cdot H$	$\cos\left(\frac{\pi K}{2}\right) \cdot H \cos\left(\frac{\pi K}{2}\right) \cdot H$
K+1 -K+1	K+1 -K+1
2π	2π
TRNSICALCEQUALEGN ISRPHILD	TRNSICALCEQUALEGN IGRPHI D

Damit sind die Fourierkoeffizienten c_k berechnet für alle k mit $k^2 \neq 1$, z.B. $c_0 = h/\pi$. Im Fall $k^2 = 1$ werden c_1 und c_{-1} gesondert berechnet, indem zuvor der Parameter k

mit 1 bzw. -1 belegt wird. Wir erhalten $c_1 = c_{-1} = h/4$.

1→K	J(trigToExp((Hoos X)e	-1→K	J(trisToExp((Hoos X)e
l	H	-1	H
	4		4

Schließlich gilt, falls k eine ungerade Zahl ($k \neq \pm 1$) ist: $c_k = 0$.

Für k = 2m (gerade Zahl) gilt $\cos(k\pi/2) = \cos(m\pi) = (-1)^m$.

Damit lautet das Ergebnis wie folgt

 $f(x) = s(x) = h/\pi + h \cdot (e^{ix} + e^{-ix})/4 + h/\pi \sum_{\substack{m = -\infty \\ m \neq 0}}^{m = \infty} (-1)^m / (1 - 4m^2) \cdot e^{i2mx}$

$$= h/\pi + h/2 \cdot \cos(x) + 2h/\pi \sum_{m=1}^{m=\infty} (-1)^m / (1 - 4m^2) \cdot \cos(2mx),$$

wobei es sich bei der zuletzt angegebenen Fourierreihe um die reelle Darstellung handelt.

Was lehrt uns dieses Beispiel hinsichtlich der Berechnung der c_{μ} ?

Eine ungeschickte Wahl der **CAS**-Menü-Befehle kann die Aufgabe fast unlösbar erscheinen lassen, hingegen kann eine geschickte Nutzung der **CAS**-Befehle zu schnellen Ergebnissen führen. Hier mußte man einfach ausprobieren, ob der **trigToExp(...** -Befehl bzw. der **expToTrig(...** -Befehl für den weiteren Verlauf der Rechnung günstiger ist. Eine generelle Empfehlung dazu gibt es nicht.

Somit wird erneut deutlich:

Der Taschenrechner ist ein Hilfsmittel und es liegt in der Verantwortung des Nutzers, dieses Hilfsmittel vorteilhaft einzusetzen. Manchmal ist es hilfreich, die Aufgabenstellung in kleinere Teilschritte zu zerlegen und dafür dann den Taschenrechner vorteilhaft einzusetzen. Bei zu großen Formeltermen kann es leicht passieren, dass beim symbolischen Rechnen der verfügbare Speicherplatz nicht ausreicht und der Rechner "hängen" bleibt.

Wir betrachten abschließend die ersten Partialsummen im **GRPH·TBL**-Menü und müssen dazu eine passende **Betrachtungsfenster**-Einstellung finden, indem verschiedene Einstellungen ausprobiert werden. Das kann uns der Taschenrechner nicht abnehmen.

Grafikfunkt.:Y=	Grafikfunkt.:Y=	Grafikfunkt.:Y=	Grafikfunkt.:Y=
Y1=1/π+cos X/2	Y1=1/π+cos X/2	Y181/π+cos X/2	Y1=1/π+cos X/2
Y2=1/π+cos X/2+2cos	Y2=X/2+2cos (2X)/(3π)	Y281/π+cos X/2+2cos	Y2=1/π+cos X/2+2cos
Y3=1/π+cos X/2+2cos	Y3=1/π+cos X/2+2cos	Y3=π)-2cos (4X)/(15π)	Y3=1/π+cos X/2+2cos
Y4=1/π+cos X/2+2cos	Y4=1/π+cos X/2+2cos	Y481/π+cos X/2+2cos	Y4=π)+2cos (6X)/(35π)
Y5:	Y5:	Y5:	Y5:
Y6:	Y6:	Y6:	Y6:
SELIDEL TYPE IGMEMIDRAWI D	Yn En Xtn Ytn Xn	Yn i Fn Xtn Ytn Xn	Yn i Fn iXtni¥tni Xn

Das erste Bild zeigt das **SET UP**. In den folgenden Bildern werden die **Achsen** ausgeschaltet und das **Betrachtungsfenster** angepaßt:

Das letzte Bild zeigt noch einmal die Ausgangsfunktion für die betrachtete Einweggleichrichtung.

Aufgaben:

13.1. Entwickeln Sie die Rechteckkurve $f(x) = \sin(\pi x) / |\sin(\pi x)|$ mit $x \neq 0, \pm 1, \pm 2, ...,$ in eine komplexe Fourierreihe! Geben Sie anschließend die zugehörige reelle Fourierreihe an.

13.2. Entwickeln Sie f(x) = (Intx-Intgx)Fracx- (1+Intgx-Intx)(1-Fracx)+1/2 (Sägezahnkurve) in eine komplexe Fourierreihe! Geben Sie anschließend die zugehörige reelle Fourierreihe an. Beschreiben Sie f(x) mit einer vereinfachten Formel! Charakterisieren Sie die Art der Unstetigkeit (einseitige Stetigkeit?).

Stellen Sie die ersten vier Partialsummen der Fourierreihe graphisch dar!

Analytische Funktionen und partielle Ableitungen

In der Funktionentheorie werden komplexe Funktionen w = f(z) mit z = x + yi dahingehend untersucht, ob diese **komplex differenzierbar** (regulär, analytisch, holomorph) sind. Dazu sind partielle Ableitungen zu bilden und die sogenannten **Cauchy-Riemannschen Differenzialgleichungen** zu überprüfen. Im Reellen lauten diese wie folgt:.

$$\partial/\partial x \operatorname{Re}(f(z)) = \partial/\partial y \operatorname{Im}(f(z))$$
 und $\partial/\partial y \operatorname{Re}(f(z)) = -\partial/\partial x \operatorname{Im}(f(z))$

Dies bedeutet im Komplexen:

$$\partial/\partial x f(z) = -i \cdot \partial/\partial y f(z)$$
 und es gilt $f'(z) = \partial/\partial z f(z) = \partial/\partial x f(z) = -i \cdot \partial/\partial y f(z)$.

Wir speichern im CAS-Menü zunächst einige symbolische Variable und Formelterme ab:

Beispiele für komplex differenzierbare Funktionen:

diff(sin Z,X) cos(X+Yi)	simplify(-i×diff(sin cos(X+Vi)	-i×diff(sin Z,Y)) cos(X+Yi)		
TRNSICALCIEQUAI egn (GRPHI D	TRNSICALCIEQUALEGN IGRPHI D		f(z) = sin(z) f'(z) = cos(z)	
diff(ln Z,X) <u>1</u> X+Yi	simplify(−i×diff(ln Z <u>1</u> X+Yi	-i×diff(ln Z,Y)) <u>1</u> X+Yi		
			f(z) = ln(z) f'(z) = 1/z	\odot

$f(z) = z^3 - 3z^2 + e^z$, $f'(z) = 3z^2 - 6z + e^z$:

diff(Z^3-3Z ² +eZ,X) 3(X+Yi) ² -6(X+Yi)+e ^{X+Y;}	diff(Z^3-3Z ² +eZ,X) +Yi) ² -6(X+Yi)+e ^{X+Yi}	simplify(-i×diff(Z^3- 3(X+Vi) ² -6X-6Vi+e ^{X+Vi}	×diff(Z^3-3Z²+eZ,Y)) 3(X+Yi) ² -6X-6Yi+& ^{X+Yi}
•	•		
CLR ISW IRANS D	CLR SW IR ANS D	CLR SW IR ANS D	CLRISWIRANSI DI

Diese Beispiele zeigen, dass einerseits die Cauchy-Riemannschen Differenzialgleichungen erfüllt und andererseits die vom Reellen her bekannten Ableitungsregeln gelten. Beim symbolischen Differenzieren wurde ausgenutzt, dass die Variable z den Term x+yi enthält.

Beispiele für nicht komplex differenzierbare Funktionen:

Wir betrachten die Funktion $f(z) = (abs(z))^2/z = \overline{z}$ und stellen fest, dass für die partiellen Ableitungen $\partial/\partial_x f(z) = 1 \neq -i \cdot \partial/\partial_y f(z) = -1$ gilt. Damit ist $f(z) = \overline{z}$ nicht differenzierbar:

diff(cExpand((Abs Z)²	(Abs Z)₹/Z),X)	simplify(-i×diff(cEzp	cExpand((Abs Z)2/Z),Y
1	1	−1	-1
TRNSICALCIEQUAI egn IGRPHI D		TRNSICALCEQUALEGN IGRPHI D	TRNSICAL CIEQUAL GAN IGRPHI D

Ebenfalls nicht komplex differenzierbar ist die Funktion f(z) = abs(z) = |z|. Für die partiellen Ableitungen gilt: $\partial_{\partial x} f(z) = x / |z| \neq -i \cdot \partial_{\partial y} f(z) = -iy / |z|$

<pre>cExpand(Abs Z) diff(cExpand(Abs Z),X simplify(-i×diff(cExp cExpand(Abs Z)</pre>),Y))
TRNSICALCIEQUALERIN ISRPHI D I TRNSICALCIEQUALERIN ISRPHI D I TRNSICALCIEQUALERIN ISRPHI D I CLR I SW IRANS	

Wir sehen uns dazu weitere Bilder im CAS-Menü an:

Abs Z IX+Vil	cExpand(Abs Z) Jx ² +V ²	diff(J(X2+Y2),X) X J _X 2 _{+Y} 2	simplify(-i×diff(J(X² -Yi Jx ² +y ²
CO LANS X ! ISISN HYP FMEM	TRNSICAL CIEQUAL A SIN IGRENI D	TRNS ICAL CIEQUAL AGN IGRAHI D	TRNSICAL CIEQUAL AGN IGRAHI D

Die folgenden Bilder sind in diesem Zusammenhang nicht erfreulich, da es den Anschein erweckt, dass die (reelle) Funktion f(z) = abs(z) = |z| (komplex) differenzierbar sei:

diff(Abs Z,X)	simplify(-i×diff(Abs	-i×diff(Abs Z,Y))	diff(Abs Z,Z)
signum(X+Yi)	signum(X+Yi)	signum(X+Yi)	signum(X+Yi)
CO TABS X ! ISI90 HVP FMEM	TRNSICALCIEQUAL CAN IGRPHI D	TRNSICALCIEQUAL CAN IGRPHI D	TRNSICALCIEQUAI EGN IGRPHI D

Wir überlassen an dieser Stelle dem Leser die Untersuchung der Funktionen f(z) = Re(z)und f(z) = Im(z) mit Hilfe der oben eingeführten komplexen Terme A = Re(z) und B = Im(z)und weisen erneut darauf hin, dass bei einer ungeschickten Wahl der **CAS**-Befehle die symbolische Rechnung möglicherweise nicht zu dem gewünschten Ergebnis führt! Es handelt sich hierbei ebenfalls um nicht (komplex) differenzierbare Funktionen.

Analytische Funktionen sind in Taylorpolynome entwickelbar und auch integrierbar:

taylor(eZ,Z,4,i)	taylor(eZ,Z,4,i)	taylor(eZ,Z,4,i)	\odot
e ⁱ (X+Yi-i) ⁴ +e ⁱ (X+Yi-i	X+Yi-i) ³ ,€ ⁱ (X+Yi-i) ²	<u>∀i-i)²</u> +e ⁱ (X+Yi-i)+e ⁱ	
24 6 ▶	4 2 ↓	¶	
TENSICALCIEQUALEGN MERPH ▷ 1	TENSICAL decual eqn KERPHI ▷	TENSICALCEQUALEGN KERPHI D	
<u>∬(sin 2,2,1-i,1+i)</u>	<u>)(2^3-32²+eZ,Z,1-i,1+</u>	CEXPand(J(Z^3-3ZZ+eZ,	$\frac{\int (2^{3}-32^{2}+eZ, Z)}{(X+Yi)^{4}} - (X+Yi)^{3}+e^{X+Yi}$ TEMETICAL CLEQUAL CAN BE A D
2•sin(1)•sinh(1)•i	2·sin(1)·ĉi-4i	(2·sin(1)·6-4)i	
TRMSICALCEQUALEGN (SRPHL 0-1)	ТКИSICALCIEQUALEGN (SRPHL р	TENSICALCEQUALEGN GRPHL D	

Graphische Darstellung von Punktmengen in der Gaußschen Zahlenebene

Nachdem es im letzten Kapitel zur komplexen Analysis etwas abstrakt zugegangen war, soll es nun wieder recht anschaulich werden. Es sollen einige Beispiele zur Darstellung von (Punkt-)Mengen in der Gaußschen Zahlenebene betrachtet werden. Dazu werden die **Un-gleichungen oder Gleichungen zur Festlegung der Punktmengen** zuerst im **CAS**-Menü so umgeformt, dass die entstehenden (reellen) Funktionsterme dann im **GRPH·TBL**-Menü ausgenutzt werden können.

Beispiel:

Man skizziere die folgende Punktmenge **M** in der komplexen Zahlenebene. Hierbei ist **M** durch eine Ungleichung charakterisiert: $\mathbf{M} = \{z \mid |z-1| < 2\}$.

Lösung:

Zuerst wird die Ungleichung im **CAS**-Menü ausgewertet. Dazu wird in *z* der Term x+yi abgespeichert. Dann wird der Term |z-1| = Abs(z-1) (linke Seite der Ungleichung) mit **cExpand(...** vereinfacht, gleich ε gesetzt (mit $0 < \varepsilon < 2$) und schließlich nach *y* aufgelöst:

X+Yi→Z	cExpand(Abs (Z-1)	cExpand(Abs (Z-1)=E	solve(eqn(1),Y)
X+Vi	29-1-2-02	7 <u>7</u> -1,2 <u>-</u> 12-E	$u_{-} = \frac{1}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{1}{2} \frac{1}$
	N(A=17 T)		
			$V = -X^2 + 2X + F^2 - 1$
CO Abs X ! Sign HVP FMEM	TRNSICAL CEQUAL EGN IGRPHI D	CO LABS X ! SIGN HYP FMEM	TRNSICAL CEQUAL EGN IGRPHI D

Wird die Gleichung 1 auf jeder Seite quadriert, erkennt man unschwer eine **Kreisgleichung** mit dem **Mittelpunkt P(1,0)** und dem **Radius R = \varepsilon** (mit **0**< ε <**2**). Mit **solve(...** wurde **eqn(1)** nach *y* aufgelöst und man erkennt leicht: **eqn(2)** beschreibt den unteren Halbkreis, **eqn(3)** den oberen Halbkreis.

Der solve(... - Befehl selbst kann die nichtlineare Ungleichung nicht auflösen, vgl. eqn(5).

CExpand(Abs (Z-1)	<2 s	solve(eqn(4),Y)		(cExpand(Abs /v_1\2.02/4	(Z-1))²<	Abs (Z-1))²<2² /v_1>2.v2//	
N(X-1)++Y+<2		(X-1)++Y+-2<0	5	(X=1)=+Y=(4	۵	(X-1)-+Y-(4	۵
CLELEL BANK		revelace also de la secul	N	TRUE COL CISOU OF OR		TRUE COL CIRCUIO LOGIS (COL	

Mit der Eingabezeile $(cExpand(Abs(z-1))^2 < 2^2$ erkennt man die Kreisungleichung als eqn(6). Damit ist anschaulich klar, die Punktmenge M ist eine Kreisumgebung (ohne Rand) um P(1,0) mit dem Umgebungsradius $\varepsilon = 2$. Wir wechseln zum GRPH·TBL-Menü, da es im CAS-Menü selbst (im Untermenü GRPH) nicht möglich ist, *y*-Terme einzutragen, s.S.67.

62 Paditz: Komplexe Zahlen

© CASIO Europe GmbH Norderstedt

Diese durch die Einstellung des Betrachtungsfensters verursachte Verzerrung des Kreises zur Ellipse kann sofort mit dem **Zoom-Square-Befehl** korrigiert werden:

Die durch Auszoomen entstandenen letzten Bilder lassen die Lage der Punktmenge $M = \{z \mid |z-1| < 2\}$ im Koordinatensystem gut erkennen.

Beispiel:

Jetzt wird eine Verschiebung des Kreises anhand der Punktmenge $M = \{z \mid |z-1-i| < 1\}$ in beide Achsenrichtungen betrachtet: $P(0,0) \rightarrow P(1,1)$. Der Radius ist jetzt 1.

Abs (Z-1-i) ↑6:elim 5:ezchns 4:rewrit 4:rewrit 3:rclAll 2:rclEan 2:rclEan 1:10:eQUED 1:2 TRMSICALCEQUAL SENSION	Abs (Z-1-i)<(1	CEXPand(Abs (Z-1-i)(1 (X-1) ² +(Y-1) ² (1 TENSICAL CLEQUALE AN INFREED	Bilder im CAS -Menü und anschließend im GRPH·TBL -Menü.
Betrachtungsfenster max :3 scale:1 dot :0.03174603 Ymin :-1 max :3 IHIIIRIGISTOISTOIRCL	Grafikfunkt::Y= Y101+J(1-(X-1)2) Y201-J(1-(X-1)2) Y4: Y4: Y5: Y6: SELIDELITYPE GMEMIDRAWI D 1		V1(1+J(1-(X-1) ²)

Für die Punktmenge (mit Rand) $\mathbf{M} = \{z \mid | z - 1 - i | \le 1\}$ entsteht praktisch das gleiche Bild:

Beispiel:

Das folgende Beispiel beschreibt eine weitere Punktmenge mittels einer Betragsungleichung für komplexe Zahlen und beinhaltet zum Erstaunen manches Schülers oder Studenten keine Kreisfläche: $M = \{z \mid |z| > |z + 2|\}$.

Interessant sind hier die vorbereitenden Termumformungen im CAS-Menü:

Abs Z)Abs (Z+2)	<u>cEzpand(Abs Z)Abs (Z+</u>	$\frac{\text{Rbs Z} + \text{Rbs (Z+2)}}{\text{X}^{2} + \text{Y}^{2}} \sqrt{(X+2)^{2} + \text{Y}^{2}} \square$	(cEzpand(Abs_Z) ² >(cEz
X+Yi > X+Yi+2 🔲			X ² +Y ² >(X+2) ² +Y ²
CO TABS X ! ISIAN HYP FMEM	TRNSICAL CIEQUAI egn ISRPHI D 1	TRNSICAL CEQUAI OGN ISRPHI DO	TENSICALCIEQUAI OGN ISRPHI DO 1
<u>rewrite(eqn(15))</u>	ezpand(Ans)	solve(eqn(18),X)	
-(X+2) ² +X ² >0 🖬	-4X-4>0 🔲	X<-1	
TENSICAL CIEQUAI E 911 ISEPHI D	TRNS CALCIEQUAL GAN ISRPHI D	TRHSICALCIEQUAI egn (GRPHI D)	

Unvermutet erhält man hier die sehr einfache Ungleichung $M = \{z \mid x = \text{Re}(z) < -1\}$.

Dieses Beispiel ermuntert zu der Feststellung, dass Mathematik manchmal wirklich recht einfach sein kann!

×3=-1	Grafikfunkt.:X=c X4E-1.1 X5E-1.2 X6E-1.3 X7E-1.4	Betrachtunesfenster Xmin :-2 max :4.3 scale:1 dot :0.05 Ymin :-1	×3=-1
	X88-1.5	maz :3	
X=- Y=	Selidelitypeigmemidrawi d	INITITRIGISTOISTOIRCLI	

Wir sehen uns nun die Punktmenge M als Halbebene im GRPH·TBL-Menü an:

Da für den Graphik-Typ x = c (= const.) keine Ungleichungsgraphik existiert, wurden weitere links von x = -1 liegende senkrechte Geraden eingezeichnet, um die Lage der **Halbebene** zu veranschaulichen.

Das Betrachtungsfenster wurde dabei bezüglich der *x*-Skalierung über die **dot**-Vorgabe **dot:** 0.05 voreingestellt, um das Graphik-Display hinsichtlich seiner Auflösung optimal auszunutzen. Die **dot**-Vorgabe entspricht damit der halben **Schrittweite** der voreingestellten senkrechten Linien vom Graphik-Typ x = c (mit c = -1/4, -1.1, -1.2, ..., -1.9, -2).

Beispiel:

Man skizziere im GRPH·TBL-Menü die folgenden Punktmengen

a) $\mathbf{M} = \{z \mid -\pi < \operatorname{Im}(z) \le \pi\}$ (Parallelstreifen \mathbf{D}_0 mit einem Rand, vgl. Kapitel 4)

Aufgaben:

. 8=3.15

15.1. Stellen Sie die komplexen Zahlen z, die der folgenden Bedingung genügen, in der Gaußschen Zahlenebene dar:

a) $M = \{z \mid |z - 2| \le 3\}$ b) $M = \{z \mid |z + 1| > 2\}$ c) $M = \{z \mid 1 < |z + 1 + i| \le 4\}$.

- 15.2. Skizzieren Sie folgende Punktmenge: $\mathbf{M} = \{ z \mid -\pi \leq \operatorname{Re}(z) \leq \pi \}$.
- 15.3. Untersuchen Sie im **CAS**-Menü die Ungleichung $|z 1| \ge 1/|z|$. (Hinweis: die Gleichung $|z - 1| \cdot |z| = 1$ beschreibt eine Cassinische Kurve.)

Kurven in der Gaußschen Zahlenebene und deren komplexe Parameterdarstellungen

Unter einer Parameterdarstellung für die Funktion w = f(z) versteht man die Gleichungen

z = z(t) = x(t) + y(t)i mit $t \in I$ (reelles Parameterintervall)

und

w = w(t) = f(z(t)) = u(t) + v(t)i.

Hierbei sind x(t) und y(t) reelle Funktionsterme zur Beschreibung der Koordinaten von z(t) und entsprechend u(t) und v(t) reelle Funktionen für die Bildpunkte w(t) = f(z(t)).

Beispiel:

Gegeben ist die komplexe Parameterdarstellung z(t) = x(t) + y(t)i = t + 2ti mit $-1 \le t \le 3$. Zu skizzieren ist die zugehörige Kurve in der z-Ebene.

Lösung:

Es handelt sich um die reelle **Parameterdarstellung** x(t) = t und y(t) = 2t mit $-1 \le t \le 3$ bzw. um die **parameterfreie Darstellung** y = 2x mit $-1 \le x \le 3$. Es ist möglich, beide Darstellungsarten im **GRPH**·**TBL**-Menü einzugeben und zu zeichnen.

Die Bilderfolge beginnt mit dem **SET UP** im **GRPH·TBL**-Menü und der Festlegung des Graphik-Typs (**Param**). Nach der Eingabe der Parameterdarstellung für x(t) und y(t) wird das Betrachtungsfenster eingestellt. Während das Parameterintervall im Betrachtungsfenster eingestellt wird, kann im letzten Bild (parameterfreie Darstellungsformel) der Definitionsbereich für x sofort hinter dem Formelterm geschrieben werden (Syntax: ..., [-1,3]).

Beispiel:

Gegeben ist die komplexe Parameterdarstellung $w(t) = u(t) + v(t)i = t - e^{it}$ mit $0 < t \le 2\pi$. Zu skizzieren ist die zugehörige Kurve in der *w*-Ebene.

Lösung:

Es handelt sich um die reelle **Parameterdarstellung** $u(t) = t - \cos(t)$ und $v(t) = -\sin(t)$ mit $0 < t \le 2\pi$.

Bemerkenswert ist hier, dass der Anfangspunkt der Kurve in die Betrachtung nicht eingeschlossen sein soll.

Der Leser möge sich hier wieder selbst die zugehörigen Taschenrechnereinstellungen überlegen.

Beispiel:

Die Kurve $\mathbf{C} = \mathbf{C}_1 \cup \mathbf{C}_2 \cup \mathbf{C}_3 \cup \mathbf{C}_4$ soll sich aus vier Teilstücken zusammensetzen, wobei folgendes gilt:

 C_1 : Geradenstück von $z_0 = -2 + 2i$ bis $z_1 = -1$

 C_2 : oberer Halbkreis von $z_1 = -1$ bis $z_2 = 1$

 C_3 : waagerechtes Geradenstück von $z_2 = 1$ bis $z_3 = 2$

 C_a : senkrechtes Geradenstück von $z_3 = 2$ bis $z_4 = 2 + 2i$.

Zu ermitteln ist für jedes Teilstück jeweils eine Parameterdarstellung derart, dass stets das (gemeinsame) Parameterintervall I = [0, 1] benutzt werden kann. Abschließend ist die Gesamtkurve **C** im Graphikdisplay darzustellen.

Lösung:

Als geeignete Parameterdarstellungen erweisen sich für

 $C_1: z(t) = t - 2 + (-2t + 2)i, C_2: z(t) = \cos(\pi(1-t)) + i\sin(\pi(1-t)), C_3: z(t) = t + 1 + 0i$ und $C_4: z(t) = 2 + 2ti.$

Beispiel:

Die Punktmenge $C = \{(x, y) | x^2 + y^2 = 2(x + y)\}$ beschreibt eine geschlossene Kurve in der *z*-Ebene. Geben Sie eine geeignete Parameterdarstellung an und stellen Sie anschließend diese Kurve in der Zahlenebene dar. Um welche bekannte Kurve handelt es sich?

Lösungsweg 1:

Wir analysieren die Kurvengleichung 2.Ordnung im **CONIC**-Menü, indem wir eine dazu passende **Kegelschnittgleichung** auswählen: $1x^2 + 1y^2 - 2x - 2y + 0 = 0$.

Damit ist offensichtlich, dass es sich um einen Kreis mit dem Mittelpunkt M(1,1) und dem Radius $R = 1,41421... = 2^{1/2}$ handelt.

Parameterdarstellung: $z(t) = 1 + i + 2^{1/2} e^{it} = 1 + 2^{1/2} \cos t + (1 + 2^{1/2} \sin t)i$ mit $0 \le t < 2\pi$.

Lösungsweg 2:

Wir analysieren die Kurvengleichung 2.Ordnung im **CAS**-Menü, indem wir mit **solve(...** nach *y* auflösen und mittels des **getRight(...** - Befehls die Gleichungsterme der beiden Teillösungen unter **Y1** bzw. **Y2** abspeichern. Dieses Beispiel verdeutlicht, dass direkt aus den **CAS**-Menü heraus Graphikfunktionsterme abgespeichert und im Untermenü **GRPH** mit **DRAW** gezeichnet werden können (hier: parameterfreie Darstellung).

$\frac{solve(X^{2}+Y^{2}=2(X+Y),Y)}{Y=\frac{-\sqrt{-4}(X^{2}-2X)+4}{2}+1} \square$ $\frac{\sqrt{-4}(X^{2}-2X)+4}{2}+1 = \square$ TEMEICAL CLECULAL SEGMENT IN THE	9etRisht(eqn(1))+¥1 -√-4(x ² -2x)+4 2 Yn Ffn Xtn Ytn Xn]	9etRisht(eqn(2))+¥2 <u>-4(x²-2x)+4</u> 2 Yn Frn IXtn Ytn Xn]	Grafikfunkt.:Y= Vi==(=4x(X^2=2xX)+4) V2=(-4x(X^2=2xX)+4)^ V3: V4: V5: V6: SELIDEL [DRAW]
Betrachtungsfenster Max :6.3 scale:1 dot :0.1 Ymin :-1.9 max :4.3 INITIRISISTOISTOIRCE	Y1=-(-4×(X^2-2×X)+4)^ X-Wert einseben X:1	Y1=-(-4×(X^2-2×X)+4)^	Y2=(-4×(X^2-2×X)+4)^(

Der Übergang von der parameterfreien Darstellung $y = f_k(x), x \in I$, kann in der Weise erfolgen, dass $x = x_k(t) = t$ und $y = y_k(t) = f_k(t)$ mit $t \in I$ (k = 1, 2) gesetzt werden:

T→X	¥1→¥t1	Y2→Yt2	X→Xt1→Xt2
Т	$\left[\left(\frac{1}{2} - \frac{1}{2} \right) \right]$	$\left[\left(\frac{1}{2} - \frac{1}{2} \right) \right]$	Т
	$-3-4(1^{2}-2(1)+4)+1$	$\frac{1-4(1^{-2}-21)+4}{1}+1$	
	2	2 .	
TRNSICAL CEQUAL AND ISPENDED	Yn Fri Xtel Xtel Xe	TRNSICAL CEQUAL AND ISRPHIL D	Yn Fri Xtel Xtel Xel
TRNSICAL CEQUAL CAN IGRPHI D	Yn Fri Xtri Ytri Xn	TRNSICAL CIEQUAL CAN IGRPHI D	Yn Yn Xtn Ytn Xn

Die Menüleiste **Yn Yn Xtn Ytn Xn** wird im **CAS**-Menü durch Drücken der **VARS**-Taste aktiviert. Im linken Bild wurde *x* parametrisiert, anschließend wurden die Formelterme **Y1** = $f_1(x)$ und **Y2** = $f_2(x)$ (untere und obere Halbkreis) in $y_1(t)$ bzw. $y_2(t)$ abgespeichert und schließlich *x* in $x_k(t)$ (k = 1, 2). Parameterintervall $I = Db(f) = [1-2^{1/2}, 1+2^{1/2}]$.

Im Untermenü GRPH kann das Betrachtungsfenster eingestellt werden:

Grafikfunkt.:Y= W01=1 Vt18-(-4×(T^2-2×T)+4 Vt28(-4×(T^2-2×T)+4) V3: V4: SELIDEL DKAW	Betrachtungsfenster Mmin ==5.3 max = 6.3 scale:1 dot =0.1 Ymin ==1.9 max =4.3 INITIRIESTOISTOIRCE	Betrachtungsfenster Ymin :-1.9 max :4.3 scale:1 Têmin :-0.4142135 max :1+52 Ptch:0.10471975
$f1=T_{2} - (-4\times(T^{2}-2\times T)+4)$ $T_{-} Went einseben$ $T: \sqrt{2}$ $T=-0.4(142)(35623)$ $W=10$	f1=T,-(-4×(T^2-2×T)+4	f2=T, (-4×(T^2-2×T)+4)

Lösungsweg 3:

Abschließend ermitteln wir im **CAS**-Menü aus der Ausgangsgleichung die Darstellung in Polarkoordinaten und die angepaßte Parameterdarstellung mit trigonometrischen Funktionen:

X ² +Y ² =2(X+Y) X ² +Y ² =2(X+Y) 0	rcos 0→X r•cos(0)	rsin 0→Y r•sin(0)	
TRNSICAL CIEQUAI EGN ISRPHI D	TENSICAL CIEQUAI GAN ISEPHI D	TRNSTCAL CIEQUAL GRINISRPHI D	
simplify(eqn(1)) r ² =2r·cos(0)+2r·sin(8	simplify(eqn(1)) 2r∙cos(ð)+2r∙sin(ð) 🏾	simplify(rewrite(eqn((-2.cos(0)-2.sin(0)4 🛛	rewrite(eqn(2))) s(0)-2•sin(0)+r)r=0 🛾
▶	4	•	
TRNSICAL CEQUAL CAN IGREAL D	TRNSICAL CEQUAL EGN IGRPHI D	TRNSICAL CIEQUAL CAN IGRPHI D	

Die Ausgangsgleichung **eqn(1)** wurde in Polarkoordinaten umgeschrieben, nachdem die Variablen x bzw. y mit den Termen $r \cos \theta$ bzw. $r \sin \theta$ belegt worden sind. In **eqn(3)** wurden alle Terme nach links gebracht und r ausgeklammert.

Die nun folgenden Schritte sind einfache Termumformungen: Die Seiten der Gleichung **eqn(3)** werden vertauscht, um den Faktor der rechten Seite $-2\cos\theta - 2\sin\theta + r = 0$ nach r aufzulösen und in **r3** abzuspeichern:

simplify(rewrite(ean(76:elim -2·sin(ð)4 E	<u>9etRight(exchange(eqn</u> (-2·cos(0)-2·sin(0)+r	exchange(eqn(3))) •cos(8)=2•sin(8)+r)r	simplify(Ans∕r) (−2•cos(ð)−2•sin(ð)+r
4 rewrit 3 rclAll 2 rclEan	▶	<	r
Î: ÎNÊQUÂF Trnsicalcique eqnisrphi d	TRNSICAL CIEQUAL EGN IGREFHI D	CLR SW IR ANS D	TRNSICAL CIEQUAI EGN IGRPHI D
simplify(Ans/r) •cos(ð)=2•sin(ð)+r)r	expand((Ans-r)×(-1)) 2·cos(0)+2·sin(0)+r-r	simplify(Ans) 2(cos(0)+sin(0))	Ans⇒r3 2(cos(0)+sin(0))
▲ r			
TRNSICAL CEQUAL CAN ISRPHI D	TRNSICAL CEQUAL CAN IGRPHI D	TRNSICAL CIEQUAI E 911 IGRPHI D	Yn I fn IXtniYtni Xn i

Da der Kreis oberhalb der Winkelhalbierenden y = -x liegt, ist als θ -Intervall $-\pi/4 \le \theta \le 3\pi/4$ ausreichend (statt $-\pi \le \theta \le \pi$), um den gesamten Kreis zu zeichnen!

T÷8 T	r3×cos_T+Xt4 2•cos(T)•(cos(T)+sin()	r3×cos T+Xt4 os(T)•(cos(T)+sin(T))	
	>	•	\odot
CLR SW IRANS D	Yn I En IXtniYtni Xn I	CLR I SW IR ANS D	
r3×sin T+¥t4 2•sin(T)•(cos(T)+sin(r3×sin T+¥t4 in(T)•(cos(T)+sin(T))	Grafikfunkt.:Y= Xt2=T Yt2=(-4x(T^2-2xT)+4)	f4=2×cos (T)×(cos (T)
Þ	•	r3=2×(cos (ð)+sin (ð Xt4∎2×cos (T)×(cos (
Yn Fri EthlYthi Xn	Yn I Yn IXtri Ytri Xn	V5: SEL DEL DRAW	T=0 K=2 Y=0

Dieses Beispiel verdeutlicht, dass eine vorgegebene Kurve (Punktmenge) durch unterschiedliche Parameterdarstellungen mit dazu angepaßten (unterschiedlichen) Parameterintervallen beschrieben werden kann!

Anwendungsbeispiel aus der Elektrotechnik:

Das komplexe Potenzial w = f(z) = u(z) + v(z)i sei durch die Umkehrfunktion $z = e^{w} + w + 1$ gegeben. Zeichnerisch zu bestimmen sind die Feldlinien u = const. und die Äquipotenziallinien v = const. (Feld am Rande eines Plattenkondensators)

Kurven in der Gaußschen Zahlenebene und deren komplexe Parameterdarstellungen

Im **CAS**-Menü wird zuerst eine Zerlegung von $z = e^{W} + w + 1$ in den Realteil und den Imaginärteil vorgenommen: $x(u,v) = \operatorname{Re}(z) = e^{u}\cos v + u + 1$, $y(u,v) = \operatorname{Im}(z) = e^{u}\sin v + v$. $\underbrace{\underbrace{U+Ui+W}_{U+Vi}}_{U+Vi} = \underbrace{\underbrace{e^{U+W+1}}_{U+Vi+e^{U+Vi}+1}}_{U+e^{U}\cdot\cos(V)+1+(V+e^{U}\cdot s)} = \underbrace{\underbrace{cEzeand(eW+W+1)}_{U+e^{U}\cdot\sin(V)}}_{U+e^{U}\cdot\sin(V)}$

Man erhält sofort für

$$u = \text{const} \in \{-5, -4, -3, -2, -1, 0, 0.5, 1, 1.25, 1.5, 1.75, 2\} = \text{List1}$$

die Kurvenschar der Feldlinien, indem im GRPH·TBL-Menü die Parameterdarstellung

$$x(\text{List1},t) = e^{\text{List1}}\cos t + \text{List1} + 1$$
, $y(\text{List1},t) = e^{\text{List1}}\sin t + t$ mit $-\pi \le t \le \pi$

benutzt wird.

Umgekehrt erhält man für

$$v = \text{const} \in \{-\pi, -3\pi/4, -\pi/2, -\pi/4, 0, \pi/4, \pi/2, 3\pi/4, \pi\} = \text{List}2$$

die Kurvenschar der Äquipotenziallinien, indem die Parameterdarstellung

 $x(t,\text{List2}) = e^t \cos(\text{List2}) + t + 1$, $y(t,\text{List2}) = e^t \sin(\text{List2}) + \text{List2}$ mit $-6 \le t \le 5$

benutzt wird:

Aufgabe:

16.1. In der komplexen *z*-Ebene sei durch ein Quadrat mit den Eckpunkten $P_1(2,0)$, $P_2(2,2)$, $P_3(0,2)$ und $P_4(0,0)$ eine Fläche Q begrenzt. Wohin werden durch die Abbildung $w = z^2$ der Rand von Q und das Innengebiet des Quadrates in der *w*-Ebene abgebildet?

Komplexe Matrizen, Determinanten sowie Gleichungssysteme

In diesem Kapitel werden speziell einige quadratische Matrizen, deren Determinanten und eindeutig lösbare lineare Gleichungssysteme betrachtet, in denen reguläre Koeffizientenmatrizen auftreten. Die Elemente der hier auftretenden Matrizen können komplexe Zahlen sein.

Beispiel:

Wir betrachten die komplexe Matrix $A = \begin{bmatrix} 3 & -2-i \\ 4-2i & 5 \end{bmatrix}$, die im **RUN·MAT**-Menü mittels

eckiger Klammern eingegeben werden kann:

[[3,-2-i][4-2i,5]] Done	AnSI2 I[IIIIE -2-i] 2[4-2i 5]		[[3,-2-i][4-2i,5]] Mat Ans+Mat A Done	A []2-i [2i]	
		3.0000	мат)		3.0000

Ohne speziellen Speicherbefehl wird die eingegebene Matrix im **[Mat]-[Ans]**-Speicher abgelegt, der als Zwischenspeicher für Matrizen dient. Mit **[Mat]-[Ans]** kann dieser Speicherinhalt aufgerufen werden, um dann z.B. unter der Variablenbezeichnung **Mat A** abgelegt zu werden. Im Matrix-Editor (Untermenü **MAT**) kann die Matrix **Mat A** eingesehen und bearbeitet werden. Schließlich wird im **RUN·MAT**-Menü die Determinante berechnet:

Matrix Mat H H H Mat B No Mat C No Mat D No Mat E No	2X 2 one one one one one	A	2 -2-;] 5]		113,-2-i11 †6:Ident 5:Rugmnt 4:Trn 3:Det 2:Dim	4-21,5]] D t A D	one one	EE3: Mat Det	,-2-i][4 Ans→Mat Mat A	-2i,5]] A 25.0)one)one)000
Mat F :No DIMIDEL DELA	one	EDITIR-OPIE	DELIROINSR	3.0000 :ADD D	Î:Mâŭ List Maticplx	CALCINUM	D I	LIST	MATICPLAIC	ALCINUM	P

Es gilt hier **Det Mat A = 25 \neq 0**, d.h. die Matrix **A** ist regulär und besitzt eine Inverse **B = A⁻¹**:

Mat A-1→Mat B Done	B2 I[2 2L-0.16> 0.12]	Mat A⊣→Mat B [[-i][-1-2i]]→Mat C Done	C
	1,5	LISTIMATICPLACALCINUM	0.0000-1.0000i

Die Matrix $\mathbf{C} = (-i, -1-2i)^{\mathsf{T}}$ besteht nur aus einem Spaltenvektor, der dann die rechte Seite eines inhomogenen linearen Gleichungssystems $\mathbf{A} \cdot (\mathbf{z}_1, \mathbf{z}_2)^{\mathsf{T}} = \mathbf{C}$ bilden soll:

Dieses Gleichungssystem kann man auch vorteilhaft im EQUA-Menü lösen:

Gleichung	Gleichzeitis Daten im	anX+bnY=Cn a b c	anX+bnY=Cn
Typ wählen	Speicher vorhand. Unbekannte:2	3 -2-i -i] 2 4-2; 5 -1-2i]	X[<u>3E-16-0.4;</u> YL -0.04-0.08;]
F2:Polynominal F3:Lösung	Anzahl der Unbekannten?	-1.0000-2.0000i	0.0000-0.4000i
SIMEPOLMSOLU	2 3 4 5 6 n	EDITIDELAI CLR SOLU	REPT

Dazu trifft man im **EQUA**-Menü die Auswahl **F1**: Gleichungssystem (mehrere lineare Gleichungen "gleichzeitig") mit zwei Unbekannten und trägt dann alle Daten des Geichungssystems ein. Mit **SOLV** bekommt man sofort die vorhandene eindeutige Lösung angezeigt.

Eine dritte Lösungsmöglichket besteht im CAS-Menü mit dem solve-Befehl:

solve((3A-(2+i)B=-i,(,(4-2i)A+5B=-(1+2i)),	A+5B=-(1+2i)),(A,B))
A= <u>-2i</u> 0	A= <u>-2i</u> 0	A= <u>-2i</u> 0
B=- <u>1-2i</u> 25-25 B	B=- <u>1-2i</u> 25-25 ₪	B=- <u>1-2i</u> 25-25 B
TRNSICALCIEQUAI CAN IGRPHI D	TRNSICALCIEQUAI CAN IGRPHI D	TRNSICALCIEQUAI EGN IGRPHI D

Hinweis:

Im **ALGEBRA**-Menü bzw. im **TUTOR**-Menü kann nicht mit komplexen Zahlen gearbeitet werden. Dort kann man reelle Gleichungssysteme in Einzelschritten bearbeiten und so die Lösungswege genauer üben.

Abschließend kehren wir in das **RUN·MAT**-Menü zurück und lösen dort das Gleichungssystem gemäß der Cramerschen Regel mit den modifizierten Determinanten **Det Mat E** und **Det Mat F**, die aus **A** hervorgehen, indem die erste bzw. zweite Spalte in **A** durch **C** ersetzt wird. Die Eingabe von **E** unf **F** erfolgt im Matrix-Editor des **RUN·MAT**-Menüs:

Mathimension m×n Ma Ma m 2 Ma n 2	E <u>i</u> <u>-i</u> ![-i <u>-z-i</u> z[-i-z;]	F <u>2</u> [; 2[4-2; 2]]	Det Mat E/Det Mat A 0.0000-0.4000i Det Mat F/Det Mat A -0.0400-0.0800i
Mat F :None	5.0000	-1.0000-2.0000i	LISTIMATICPLX CALCINUM D
DIM DEL DELA	EDITIR-OPIR-DELIR-INAR-ADDI D	EDITR-OPIR-DELIR-INAR-ADD D	

Aufgaben:

17.1. Untersuchen Sie das lineare Gleichungssystem mit der Koeffizientenmatrix

$$\mathbf{A} = \begin{bmatrix} i & 2 & 4 \\ 0 & 1 & 2i \\ -i & 0 & 4 \end{bmatrix} \text{ und der rechten Seite } \mathbf{C} = \begin{bmatrix} 3+2i \\ 1+i \\ -1 \end{bmatrix}$$

17.2. Untersuchen Sie das lineare Gleichungssystem mit der Koeffizientenmatrix

$$\mathbf{A} = \begin{bmatrix} i & 2 & T \\ 0 & 1 & 2i \\ S & 0 & 4 \end{bmatrix} \text{ und der rechten Seite } \mathbf{C} = \begin{bmatrix} 3+2i \\ 1+i \\ -1 \end{bmatrix}.$$

Für welche Parameter **S** und **T** ist das Gleichungssystem eindeutig bzw. mehrdeutig bzw. gar nicht lösbar?

(Keine) Scherzaufgaben mit komplexen Zahlen -"Wo steckt der Fehler?"

In diesem Kapitel werden einige Termumformungen betrachtet, die zunächst glaubhaft erscheinen aber dann offensichtlich oder vermutlich zu fehlerhaften Gleichungen führen.

Beispiel 1:

Wie ist der folgende "Widerspruch" zu erklären?

$$-1 = i \cdot i = \sqrt{-1} \cdot \sqrt{-1} = \sqrt{(-1) \cdot (-1)} = \sqrt{1} = 1.$$

Beispiel 2:

Ein mathematischer Zauberkünstler rechnete im Bogenmaß wie folgt:

$$1/2 \cdot \sqrt{2 + i/2} \cdot \sqrt{2} = \cos(\pi/4) + i\sin(\pi/4)$$

= $e^{i \cdot \pi/4} = e^{i \cdot 2\pi/8} = (e^{i \cdot 2\pi})^{1/8}$
= $\sqrt{\sqrt{\sqrt{e^{i \cdot 2\pi}}}} = \sqrt{\sqrt{1}} = 1.$

Wo steckt der Fehler?

Beispiel 3:

Jemand behauptet scherzhaft, dass jede komplexe Zahl auf dem Einheitskreis gleich **1** ist und es damit eigentlich gar keine komplexen Zahlen gibt. Was meinen Sie zu folgendem Beweis?

$$\cos(\theta) + i\sin(\theta) = e^{i\theta} = e^{i2\pi \cdot \theta/2\pi} = (e^{i2\pi})^{\theta/2\pi} = (1)^{\theta/2\pi} = 1$$

Beispiel 4:

Im **CAS**-Menü wird symbolisch überprüft, dass die Logarithmus-Funktion die Umkehrung der Exponentialfunktion ist:

Anschließend wird im RUN·MAT-Menü

$$\ln\left(e^{10+10i}\right) = 10,0000 - 2,5664i = 10+10i$$

gerechnet. Wie ist dieser "Widerspruch" zu erklären?

Beispiel 5:

Um zu "widerlegen", dass das Wurzelziehen die Umkehroperation zum Potenzieren sei, könnte man folgendes Taschenrechnerbeispiel betrachten:

((-8)^3)^(1/3) 4.0000+6.9282i	Hngle :Rad Hnswer Type :Complex Display :Fiz4	<u>cEzPand(((-8)^3)^(1/3</u> 4√3i+4
LISTIMATICPLXCALCINUM] D	Realicex	TENSICAL CIEQUAL CAN IGRAMI D

Zuerst wird im RUN·MAT-Menü und dann im CAS-Menü gerechnet.

Warum gilt nicht $((-8)^3)^{1/3} = {}^3\sqrt{(-8)^3} = -8$?

Beispiel 6:

Ein Schüler hatte früher einmal in der Schule gelernt, dass die Sinus-Funktion beschränkt ist und $|\sin z| \le 1$ gilt.

Er rechnet im RUN·MAT-Menü und dann im CAS-Menü:

Abs $(\sin (10i)) = 11013,2329$

und ist etwas irritiert. Was meinen Sie dazu?

Beispiel 7:

Die komplexe Ableitung einer Funktion w = f(z), mit z = x + yi, kann, sofern diese existiert, wie folgt berechnet werden:

$$\partial_{\partial x} f(z) = \partial_{\partial z} f(z) \cdot \partial z_{\partial x} = \partial_{\partial z} f(z) \cdot \partial (x + yi)_{\partial x} = \partial_{\partial z} f(z) \cdot 1,$$

d.h.

$$f'(z) = \partial/\partial z f(z) = \partial/\partial x f(z) = \partial/\partial x \operatorname{Re}(f(z)) + i \cdot \partial/\partial x \operatorname{Im}(f(z)).$$

Wir betrachten nun konkret die Funktion $w = f(z) = Abs(z) = |z| = \sqrt{x^2 + y^2}$ und berechnen im **CAS**-Menü sowohl $\partial/\partial_z f(z)$ als auch $\partial/\partial_x Re(f(z)) + i \cdot \partial/\partial_x Im(f(z))$ und vergleichen die Ergebnisse:

Wo steckt der Fehler?

Beispiel 8: Lösen Sie die Aufgabe auf S. 36 unten!

Lösungshinweise zu den weiterführenden Aufgaben der einzelnen Kapitel

Kapitel 1:

L1.1: Achten Sie auf die Einstellungen im SET UP und im Betrachtungsfenster:

L1.5: Anzeige der Ergebnisse im List-Ans-Speicher im RUN·MAT-Menü:

Func Type Draw Type Derivative Angle	r= ↑ Connect Off Des	(1+i√3,3+4i,-3i) Done	AnS 1[122308] 2 5653.> 3 30-90;]	AnS 1 2050; 2 33578 3 39 - 90; 1
Complex Mod Coord Grid Reala-barenes	e re~61 On Off ↓		2 6 601	5 6 53.13010235i

L1.6: Anzeige der Ergebnisse im RUN·MAT-Menü:

9(cos	330+isin	330)⊧a
9(cos	7.79422860 330+isin	34-4.5i 330)⊧r
é^ði	000.1010	94-305
		76-30I

LISTIMATICELRICALCINUMI DI L1.7: Anzeige der Ergebnisse im List-Ans-Speicher im RUN·MAT-Menü:

• •	•		
énS La Sa	AnS IC SD	Pol(3,4) Done	Mode Comp Func Type :r=
al 53.13	au 53. 13	Rec(5,π/3)	Draw Type Connect
		Done	Angle Rad
5	53.13010235		Complex Mode∶a+bi Coord :On ↓
		PROBINYP ANGLISTATIFMEM D	Deg Rad Gra
AnS	AnS	(3+4i))re^8i	cEzpand(5×e(iπ/3))
2.4. 3301	2.5 2.4.3301	5×e(iπ/3)⊧a+bi	<u>53i+5</u>
		2.5+4.330127019i	2 2
	1 770107010		
2.5	4.330127019		

L1.8: Anzeige der Ergebnisse im CAS-Menü:

cos X+isin X+A cos(X)+sin(X)•i	cos X-isin X→B cos(X)-sin(X)•i	A×B)−sin(X)•i)(cos(X)+sin	simplify(A×B) 1
		4 4	
TENSICAL CIEQUAL EGIN ISEPHILI D	TRNSICAL CIEQUAI e 91 ISRPHI D	TENSICAL CEQUALERIN ISRPHI D	TENSICAL CEQUALERN ISRPHI D

L1.9: Anzeige der Ergebnisse im CAS-Menü:

Angle :Rad Answer Type :Complex Display :Fixy	2+2i→C 2+2i	<u>3(cos (3π/4)+isin (3π</u> (- <u>3</u> + <u>3i</u>)√2	<u>3π/4)+isin (3π/4))+D</u> (- <u>3</u> + <u>3i</u>)√2
Fiz I Sci Morm	TRNSICALCIEQUALEGN ISRPHI D	TRHSICALCIEQUAL CAN ISRPHI D	TENSICAL CIEQUAI GAN ISRPHI D
$\frac{cExpand(C+D)}{\left(\frac{3\sqrt{2}}{2}+2\right)i-\frac{3\sqrt{2}}{2}+2}$	approz Ans -0.121+4.121i	cEzpand(C×D) -6√2	approz Ans -8.485
TRNSICALCIEQUAI egn IGRPHI D	TRNSICALCIEQUALEAN ISRPHI D	TRHS CALCEQUAL 6 4N ISRPHI D	TRNS ICALCIEQUAI GAN IGRPHI D

Kapitel 2:

L2.1: Achten Sie auf die Einstellungen im SET UP. Berechnung im RUN·MAT-Menü, dann im CAS-Menü:

Angle :Deg 1 Complex Mode:re^0i Coord :On Grid :Off Axes :On Label :On Display :Fix3	1-i→A 1/2+i×√3/2→B 0.500+0.866i -1-i→C -1.000-1.000i	A²×8/C^3 0.707€15.000i Ans⊧a+bi 0.683+0.183i	(A+1)×8²/C 1.581€-131.565i Ans⊧a+bi -1.049-1.183i
1-i ÷A 1-i 1-i	1/2+1×J3/2+B √31 + 1 2 + 2 TRHS[CALCEQUA] eqn (SRPHI D	-1-i→C -1-i TRHSICALCEQUALERN ISRPHI D	$\frac{\sqrt{3}}{\sqrt{3}} + \frac{1}{4} + \left(\frac{\sqrt{3}}{4} - \frac{1}{4}\right)\mathbf{i}$ TRNS CALCEQUAL eqn (GRPH)

approx Ans 0.683+0.1831	$ \frac{(-\sqrt{3}-3)}{\left(\frac{-\sqrt{3}}{4}-\frac{3}{4}\right)i-\frac{3\sqrt{3}}{4}+\frac{1}{4}} $	approx Ans -1.049-1.1831	Ansle Rad Complex Node a+bi Coord On Grid Off Axes On	↑ ■
TRNSICAL CEQUAL CAN IGRAHI D	TRNSICAL CEQUALERN IGRPHI D	TRNSICAL CEQUAL CAN GREAT D	Display Fiz4 Reala-bakerea	

L2.2: Berechnung im RUN · MAT-Menü:

3+4i→A	3 0000+4 0000€	1/(A×B) а аааа-а а4аа;	0.0000-0.0400i A/R
4+3i→B	4 0000+3 0000	A/B и 9600+0 2800i	0.9600+0.2800i Conia 8/Conia 8
А-В	-1.0000+1.0000i	Conja A/Conja B 0.9600-0.2800i	0.9600-0.2800i Conja Ans
LISTIMAT			0.9600+0.2800i

L2.3: Berechnung im RUN · MAT-Menü:

L2.4: Berechnung im RUN·MAT-Menü, dann im CAS-Menü:

√3+i×√2+A 1.7321+1.4142i A/Conjs A 0.2000+0.9798i 4/(4(cos 30+isin 30))	cExpand((√3+i√2)/(√3- 2√6i +1 5 +5	approx Ans 0.2000+0.9798i
0.8660-0.5000i Listimaticply/calcinumi p	TRNS CALCIEQUAL CAN ISRPHI D	TRNSICALCISQUAI E 911 ISRPHI D
Angle :Deg Answer Type :Complez Display :Fiz4	<u>cExpand(4/(4(cos 30+i</u> <u>√3_i</u> 2_2	approz Ans 0.8660-0.5000i
DeglRad	TENSICAL GEQUAL CAN ISREHI D	TENSICAL GEQUAL 6 90 ISRPHI D

L2.5: Berechnung im CAS-Menü, dann im RUN · MAT-Menü:

√2×e(i×7×π/4)÷A 1−i TENSICALCIEQUALEAN ISEPH D	1×e(iπ/3)+B \[3] +1 2+2 TENSICALCEQUALEGN SEEME D	J2×e(i×5×π/4)÷C −1−i TEMS[CALCEQUA] eqn ISRPH ▷]	Angle :Rad Answer Type :Complex Display :Norm1
CEXPand(A×B/C) -J3+i 2+2 TENSICALCEQUAL CAN SEE 1	approx Ans -0.8660254038+0.51 TENSICALCEQUAL CAN ISSEM D	Abs Ans 125000000000673826361 5000000000 CO TABS X : ISI96 HYP FMEM	Abs_cExpand(A×B/C) 1 1 TEMSICALCEQUAL GAN ISEPHI_D
<u>арргод (ЯХВ/С)</u> 0.8485281374−1.039230 ▶ ТКН5[Cal.dequal eqn (SRPHI)	im CAS -Menü im RUN · MAT -Menü:	R 1.732050808 +1.4142135621 B 1.2 C 2i LISTIMATICPLNICALGHUM D	0.8485281374 -1.039230485i

Der Zugriff mit **approx** auf **A**, **B**, **C** ruft Speicherinhalte der numerischen Variablen des **RUN·MAT**-Menüs ab - nicht die Speicherinhalte der symbolischen Variablen **A**, **B**, **C**, d.h. im **CAS**-Menü existieren zwei Variablentypen (numerisch und symbolisch) unter der gleichen Variablenbezeichnung!

L2.6: Berechnung im CAS-Menü. Zerlegung von eqn(1) in seinen Realteil und Imaginärteil:

-			÷
R(2+3i)+B(1+2i)=1-4i CExε (2+3i)R+(1+2i)B=1-4iΠ (3R+	≥and(eqn(1)) ⊨2B)i+2A+B=1-4i A	cExpand(rewrite(eqn(2) (3A+2B+4)i+2A+B-1=0	solve((3A+2B+4=0,2A+B A=6 A
			B=-11 G
TRNSICAL CIEQUAL CAN IGRPHI D	CALCEQUAL 69N IGRPHI D	TRNSICALCIEQUAI CAN IGRPHI D	TRNS CALCIEQUAL CAN IGRPHI D
4=0,2A+B-1=0),(A,B)) getR	Right(exchange(eqn	exchange(egn(4)))+Z	cExpand((Abs Z)²/Z)→W
H=6 5 2H+8 B=-11 5	3+(3H+2B+4)1-1	2H+B+(3H+2B+4)1-1	2H+B-1+(-3H-2B-4)1

Z und W beinhalten den Gleichungsterm bzw. den konjugiert komplexen Gleichungsterm von **equ(4)**. Mit **eqn(8)** und **eqn(9)** werden der Real- bzw. Imaginärteil der Gleichung **equ(4)** symbolisch erzeugt:

simplify(cExpand((Z+W	cExpand((Z+W)/2=0))	1	simplify(cExpand((Z-U	J	cExpand((Z-W)/(2i)=0)	ĵ,
2A+B-1=0 n	28+B-1=0 n		3 8+ 2B+4=0	3	3 8+ 2B+4=0	3
		1		-		1
		L				
		L				
		L				
		L				
TRNSICALCIEQUAI E 911 ISRPHI D	TRNSICALCIEQUALERIN ISRPHI D		TRNS ICALCIEQUAI EGN ISRPHI D	1	TRNS ICALCIEQUAL EAN ISRPHI D	1
colue((ean(8).ean(9))	$ean(8) \cdot ean(9) \cdot (8 \cdot 8)$	1				
H=6 DD	н=6 Ш					
B=-11 00	B=-11 00					
		L				
		L				
		L				
TRNSICALCIEQUALE910 IGRPHI D II	TRNSICALCIEQUALE911 (GRPHI D II					

L2.7: Berechnung im CAS-Menü, dann im RUN·MAT-Menü (Datenübergabe im Termspeicher):

(-2+2×13×i)/(2+15×i)- 2√3i-2_5(√3+i) √5i+2_2√5+5i TRMSICALCEQUALERNMERTED	-5(J3+1)/(2×J5+51)+2 2J31-2_5(J3+1) J51+2 2J5+51 TENEICALCIEQUAL GAN IGRAMI	CEXPand(2) √3i-1 TENSICAL CEQUAL EGN ISERENT D	CEXPand(2) √3i-1 4:SEE 3:fn 2:Recall 1:Store CO LADS X: Sign[HYP FMEM]
== Termspeicher == dann3^(1/2)×i-1 fa: fa: fs: fs: f6: sTOIRCLIfn	4:SEE 3:fn 2:Recell 1:Store PROBHVP JANGLISTAT FMHM D	Mode :Comp Func Type :r= Draw Type :Connect Derivative :Off Hngle :Deg Complex Mode:a+bi Coord :On ↓ DegTRadIgra	3^(1/2)×i-1⊧re^ei 20120i Ans⊧a+bi -1+1.732050808i LIST[MAT]CPLX[CALGNUM] p

L2.8: Berechnung im CAS-Menü (zwei Varianten), dann im EQUA-Menü:

-			
3A-(2+i)B=-i	(4-2i)A-5B=-1-2i	eliminate(eqn(1),A,eq	solve(eqn(3),B)
3A+(-2-i)B=-i 0	(4-2i)A-5B=-1-2i 🛛 🖪	$(., i)_{n} 3i_{-}$	1.2i
_	_	[1+ <u>2</u>] ^B - <u>2</u> =-1 [⁶⁼ 5 ⁺ 5
TRNSICAL CIEQUAL GAN IGRPHI D	TRNSICALCIEQUAL CAN IGRPHI D	TRNSICALCIEQUAL CAN IGRPHI D	TRNSICALCIEQUAL CAN IGRPHI D
eliminate(eqn(1),B,eq	ean(1),B,ean(2))	solve(eqn(5),A)	
A-i=-i 🛛	A-i=-i 🛛	A=0 🖸	Lösung mit dem
			eliminate-Befehl
			emmale-Delem,
			Vereinfachung mit
TRUE AND ADDUCT ON ADDUCT			dem solve- Refehl
	CERTSWIRHINSI I DI		dem Solve Delem.
<pre>solve((eqn(1),eqn(2))</pre>	(eqn(1),eqn(2)),(A,B)		alama a alura Dafalal
A=0 🛛 🖉	A=0 🛛 🖉	Unmittelbare Losung mi	i dem solve- Beteni.
-1,2i	_1.2i		
P=5*5 U	P=515 0		
		Schließlich: Lösung im	EQUA-Menü
		ala kamplayaa linaaraa (Naiahungaayatam
ITRNSICALCIEQUALEGN IGRPHI DI I	CLR SW RANS D	als komplexes lineares (dielchungssystem.
Gleichung	Gleichzeitig	anX+bnY=Cn	anX+bnY=Cn
	Daten im	<u>a</u> <u>b</u> <	
	Speicher vorhand.	IF 3 -2-i -i7	אך סין
Typ_wählen	Unbekannte:2	2L 4-2; -5 -1-2; J	YL 0.2+0.4i
Fl Gleichzeilig	Over a la 1 - al ave		
FZ:FOIYNOM1NAL	Inzani der Upbokoppt op?	-1-21	0 2±0 4€
			0.270.41
SAMER VENISVEM		EDA HVERHIVEN I SOLOH	INET II

Kapitel 3:

L3.1: Die Zahl z = -2 + 5i liegt offensichtlich im Winkelraum **D**₁ (Winkel 111.8°).

L3.4: Die Zahl *z* liegt in **D**₅ (Winkelraum -128,57°<-120° = $\arg(z) \le -77,14^{\circ}$), d.h. *z*⁷ liegt in Blatt 5:

Angle :Deg 1 Complex Mode:a+bi Coord :On Grid :Off Azes :On Label :Off Diselay :Fiz2	-1-i/3+2 Arg Z -1.00-1.73i (-180/7,-180/7-360/7, -180/7-2×360/7)	enS I[-25.71] 2[5771-10] 3[-128.5] - 77.14	сЕхрапd((-1-√3×і)^7) —64√3і—64
Deg Rad Gra	LISTIMATICPLXICALCINUM		TRNSICALCIEQUAI CAN IGRPHI D

L3.5: Die *z*-Potenzen bilden sich spiralförmig in der Gaußschen Zahlenebene ab:

78 Paditz: Komplexe Zahlen

L3.6: Die gewünschte Vereinfachung von z^5 konnte auf direktem Wege im **CAS**-Menü nicht realisiert werden:

$\frac{\frac{11}{10 \times e(\mathbf{i} \times \pi / 10) + 2}{11\left(\frac{(\sqrt{5} - 1)\mathbf{i}_{+} \sqrt{2(\sqrt{5} + 5)}}{4}\right)}{10}$	Angle <u>Rad</u> Ar Zahl wählen Fiz[0~9]: 3	approz Z 1.046+0.340i	simplify(2^5) 161051(J2J5+10+J5i-i) ⁵ 102400000
TRNSICALCIEQUALEGN IGRPHILD	FiX Sci Norm	TRNSICALCIEQUAI E 911 IGRPHI D	TRNSICALCIEQUAI EGN IGRPHI D
(r×e(ið))^5 e ⁵⁰ i _r 5	11/10+r 11 10	<u>π/10+0</u> <u>π</u> 10	(r×e(i0))^5 161051((<u>√5−1)i</u> + <mark>√2(√5+5</mark> 100000
TRNSICAL CIEQUAL CAN IGRPHI D	TRNSICALCIEQUALERN IGRPHI D	TRNSICAL CIEQUAL EGIN ISRPHI D	TRNSICALCIEQUAL EGIN IGRPHI D
$ = \frac{1}{10000000000000000000000000000000000$	Speicherfehler	Eine schon vereinfachte Termeingabe ergab das gewünschte Ergebnis:	r^5×e(5×i×ð) 161051i 100000 TENSICALCIEQUALERN ISRPHI D

Kapitel 4:

L4.1: Die Lösung wird zunächst für z selbst ausgeführt, d.h. |z| = abs z = r, $\mathbf{R} = \mathbf{Re}(z) = (\mathbf{Z}+\mathbf{W})/2$, $\mathbf{I} = Im(z) = (\mathbf{Z}-\mathbf{W})/(2i)$ und $\mathbf{H} = \theta = arg(z) = -arctan(\mathbf{R}/\mathbf{I}) + \pi/2 \cdot sgn(\mathbf{I})$ (Hauptargument) werden ermittelt. Als Hilfsvariable wird dabei unter W die konjugiert komplexe Zahl zu z abgespeichert: $\mathbf{W} = conjg z = (abs z)^2 / z$:

A+Bi→Z	(Abs Z)⁼∕Z→W	cExpand(W)	(Z+W)/2→R
A+Bi	(A+Bi) ² A+Bi	A-Bi	(A+Bi) ² A+Bi 2
TENSICAL CEQUAL EGN ISREHI D CEXPand (R) R TENSICAL CEQUAL EGN ISREHI D	CO TABSI XIISIBNIHYPIFMEM (Z-W)/(2i)+I -(<u>-(IA+BiI)</u> 2 A+Bi 2 TRHSICALCIEQUALEBNIKSREHI DI	TRHEICALCIEQUAL CAN ISRPHI D	TENSICAL CEQUAL GAN ISEPHILD -tan-I (A/B)+π/2×signum -tan-I (A/B)+π·signum(B) 2 collabs: x: Isign(HYP) FMEM
$\frac{(A/B) + \pi/2 \times \text{signum}(B) + H}{-t \cdot \text{an}^{-1} \left(\frac{B}{B}\right) + \frac{\pi \cdot \text{signum}(B)}{2}}$	eZ÷Z € ^{A+Bi}	(Rbs 2)2/2+W e ^{-A-Bi} .(_e A+Bi) ²	simplify(cExpand(W)) e ^R (cos(B)-sin(B)·i)
ICLRISW RANSI I D H	ITENSICAL CLEQUAL CAN GREAT DI	ITENSICAL CIEQUAL CAN IGRPHI DI II 1774 III Y 2040	TRNSICALCIEQUALEAN GREAT DI
e ^{A-Bi}	e ^{A-Bi}	<u>e^{R+Bi}+e^{-R-Bi}.(e^{R+Bi} </u> 2 ▶	ε ^A ·cos(B)
TRNSICALCIEQUAL CAN IGRAHI D	TRNSICAL CIEQUAL 6 90 ISRPHI D	TRNSICAL CEQUAL 6 9N IGRPHI D	
(Z-W)/(Zi)+I -(e ^{R+Bi} -e ^{-R-Bi} .(e ^{R+B} 2 ▶	simplify(cExpand(I)) e ^A (-cos(2B)+1) 2•sin(B)	tEzpand(simplify(cEzp e ^R (-(cos(B)) ² +(sin(B) 2•sin(B) ♪	simPlify(cExpand(I))) os(B)) ² +(sin(B)) ² +1) < ² •sin(B)
CLR SW RANS D	TRNSICAL CIEQUAL CAN IGRAHI D	TRNSICAL CIEQUAL CAN GREAT D	
eR(-cos (2B)+(sin B) ² e ^R ((cos(B)) ² +(sin(B)) ²	tEzpand(eA(- <u>cos (2B)+</u> € ^A •sin(B)	Die Vereinfachung von I	eA×cos B→X ¢ ^A ·cos(B)
2.2.1		zu e^ ·sin(B) war nicht ganz unproblematisch.	
TRNSICALCEQUALEGN IGRPHI D	TRNSICALCIEQUALERN IGRPHI D		TRNSICAL CLEQUAL CAN IGRPHI D
<u>eH×sın B+Y</u> ê ^A •sin(B)	<u>-tan⁻¹ (X/Y)+π/2×signu</u> -tan-1(<u>cos(B)</u>)+ <mark>π•signu</mark> ▶	(X/Y)+π/2×signum(Y)+H .]+ <mark>π.signum(@^A.sin(B))</mark> < 2 >	sımplıty(H) -tan⊣(<u>1</u> tan(B))+ <mark>π•signu</mark> ♪
TRNSICALCIEQUALEGN IGRPHI D	CO LABS X ! ISI9N HYP FMEM	CLR SW RANS D	TRNSICALCIEQUALERN IGRPHI D

© CASIO Europe GmbH Norderstedt

Paditz: Komplexe Zahlen 79

L4.2: Die Lösung wird m	it und ohne CAS (RUN · N	IAT-Menü) ermittelt, vgl.	L4.1:
√3+51→2 7:5:	simplify(-tan- (13/5)	√3/5)+π/2×sianum(5)) (反) –	approx Ans/π×180 70 89339465
NJTJI	-tan-1(*3)+~2	-tan-1(*3)+2	
-Z+Z	simplify(-tan- (-√3/-	7-5)+π/2×signum(-5))	approx Ans/π×180
-√3-5i	$-t_{an} \left(\frac{\sqrt{3}}{2}\right) - \frac{\pi}{2}$	-t.an=l(<u>43</u>)_ <u>π</u>	-109.1066054
	van (5) 2	van (5) 2	
TRNSICALCISQUAI CAN ISRPHI D	TRNSICALCIEQUAI CAN IGRPHI D	TRNSICALCISQUAL CAN IGRPHI D	TRNSICAL CIEQUAL CAN IGRPHI D
simplify(Abs Z)	Abs eZ	simplify(cExpand(Ans)	approx Ans 5 652233674
241	e ⁴³⁺³¹	Je ^{2√3}	0.002200014
LCO TABSIX ! ISI9NIHYPIFMEMI I⊖(J3+51)+7	LCO TABST X ! ISI9NTHYP IFMEMT I⊖(J3-5i) +III	TRASICALCIEQUALERIN GRPHI D II	ITENSICALCEQUALEGN GEPHL D simplify(cFypand(X))→
adio:01772		م\3+5i_م\3-5i	soc(5).e3
с 	6	2	CUS(37.6
TRNSICALCIEQUALERIN ISRPHI D	TRNSICALCIEQUAL CAN IGRPHI D	TRNSICALCIEQUALEAN IGRPHI D	TRNS CALCIEQUAL CAN IGRPHI D
(Z-W)/(2i)+Y	simplify(cExpand(Y))→	-tan ⁻ (X/Y)+π/2×si9nu	(X/Y)+π/2×signum(Y)+H
$-(e^{\sqrt{3}+5i}-e^{\sqrt{3}-5i})i$	sin(5)•e ¹³	-t.an-l(<u>cos(5)</u>)+π·sianu	$\iota \cdot signum(sin(5) \cdot e^{\sqrt{3}})$
2		van (sin(5)) ►	4 ²
TRNSICAL CIEQUAL CAN IGRPHI D	TRNSICALCIEQUALERIN IGRPHI D	CO TABS X ! ISI9N HYP FMEM	CLR SW IRANS D
SIMPLITY(H)+H	Hns/π×1807H	Die Vereinfachung von H	im CAS-Menü mit approx
$-tan^{-1}\left(\frac{1}{tan(5)}\right)+\frac{\pi \cdot signu}{\pi}$	$\left 180\left(-\tan^{-1}\left(\frac{1}{\tan(5)}\right)+\frac{\pi\cdot g}{s}\right \right $	zu -/3,52° war nicht ganz	unproblematisch. Es gilt für
•		$\lim(\tau) = 5 \cdot \pi < 5 \leq 3\pi \implies \tau$	⊂ D → w∈ Blatt 1 für
	JL	$\lim_{x \to \infty} (x) = 0, x < 0 \ge 0, x \to \infty$	$e \mathbf{D}_1 \rightarrow w e \mathbf{D} \mathbf{D} \mathbf{u} \mathbf{u}$, lui
TENSICAL CIEQUAL CAN IGREAL D	TRNSICALCIEQUAL CAN ISRPHI D	$\operatorname{Im}(z) = -5: -3\pi < 5 \leq -\pi \Longrightarrow$	$z \in D_1 \implies w \in \text{Blatt 1}, \text{ for } z \in D_{-1} \implies w \in \text{Blatt -1}$
TRNSICALCIEQUAIeqniaRPHID [Angle1Deg↑	TRHSICALCIEQUAL GAIN ISRPHILD	$\lim_{z \to -\infty} m(z) = -5: -3\pi < 5 \le -\pi \Longrightarrow$	$z \in D_1 \implies w \in Blatt +, tot z \in D_1 \implies w \in Blatt + 1$
TENSICALCEQUALEGN ESEPHIOL Angle :Deg 1 Complex Mode:re^8i Coord :Dng	7 TRNSICALCIEQUAI eqn ISRPHI ▷ 1 √3+51÷2 5.2915670.89341 (Z,-Z)÷List 1	$\lim_{z \to -\infty} (z) = -5; -3\pi < 5 \le -\pi \Longrightarrow$	$z \in D_{-1} \implies w \in \text{Blatt 1, tot}$ $z \in D_{-1} \implies w \in \text{Blatt -1}$
TRNSICALCEQUALEGN ISRPHID Angle Deg T Complex Modelrefai Coord On Grid Off Azes On	7 TENSICAL CLEQUAL & AN ISEPHI D 13+51÷Z 5.2915670.8934i (Z,-Z)÷List 1 Done Abs List 1	$\lim_{z \to -\infty} z = -5: -3\pi < 5 \le -\pi \Longrightarrow$	$z \in D_{-1} \implies w \in Blatt -1$
TRNSICALCEQUAL@9n/GRPHL D Angle :Deg 1 Complex Mode:re^0i Coord :On Grid :Off Axes :On Label :Off Display :Fix4	TENSICAL CLEQUAL CONTENTS TENSICAL CLEQUAL CONTENTS T3+51+2 5,2915670.89341 (Z,-Z)+List 1 Abs List 1 Done Arg List 1 Done	$\lim_{z \to -5: -3\pi < 5 \le -\pi \Rightarrow 1} \lim_{z \to -2: -2915} \lim_{z \to -2$	$z \in D_1 \implies w \in Blatt +, 101$ $z \in D_1 \implies w \in Blatt + 1$ $\begin{bmatrix} n \cdot 3 \\ 2 \end{bmatrix} \begin{bmatrix} 100 \cdot 1093 \\ 2 \end{bmatrix} \\ 109 \cdot 1066 \cdot 180 \cdot 0000 i \end{bmatrix}$
TRASICALCEQUALEGN GRPHL D Angle : Deg f Complex Mode: re^ði Coord : On Grid : Off Azes : On Label : Off Display : Fix4 Fix Isci Norm Eng	TEMEICALCEQUALEGN SEEPHI D TEMEICALCEQUALEGN SEEPHI D T3+51+2 5.2915670.8934i (Z,-Z)+List 1 Abs List 1 Abs List 1 Done Arg List 1 LISTIMATICELX/CALCHUMI D	$lm(z) = -5: -3\pi < 5 \le -\pi \Longrightarrow$ $l[\pi,z]$ $l[\pi,z]$ $[\pi,z]$	$z \in D_1 \implies w \in \text{Blatt 1, 101}$ $z \in D_1 \implies w \in \text{Blatt -1}$ $\begin{bmatrix} n_1 & n_2 & \dots & n_{2} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots &$
TRNSICALCEQUALEGN SEPHING Angle :Deg 1 Angle :Deg 1 Complex Mode: re^8i :Deg 1 Coord :On :Diff Rzes :On :Diff Display :Fiz24 :Fiz24 Fiz15ci Norm Engl :Degen Second Engle :Degen Second Engle L4.3: Die Berechnung e :Die Second Engle :Degen Second Engle	TENSICAL degual ean ISEPHI D J3+51 + 2 5.2915e70.8934i (Z, -Z) + List 1 Abs List 1 Arg List 1 Done Arg List 1 TESTIMATION D Tolgt mittels einer geeign	$Im(z) = -5: -3\pi < 5 \le -\pi \Longrightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Longrightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Longrightarrow$ $Im(z) = -5: -2915$ $5. 2915$ eter Listenarithmetik im F	$z \in D_{-1} \implies w \in \text{Blatt -1}$ $z \in D_{-1} \implies w \in \text{Blatt -1}$ $[10, 093]$ $109.10666180.00001$ $RUN \cdot MAT-Menü:$
TENSICAL CEQUAL SAME SEPHING Angle Deg Complex Mode: Cond On Grid Off Azes On Label Off Fix Isst Horm Engl L4.3: Die Berechnung e Ims	TENSICAL DECUAL CONTRACTOR OF THE SECOND CONTRACT OF THE SECOND CONTRACTOR OF THE SECOND CONTRAC	$Im(z) = 0; \pi < 0 \ge 0; \pi \rightarrow z$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$	<pre>> z∈ D₁ ⇒ w∈ Blatt 1, 101 > z∈ D₁ ⇒ w∈ Blatt -1 ************************************</pre>
TENSICALCEQUAL eqn ISEPHING Angle Deg T Complex Mode: re^8i Cond On Grid Off Azes On Label Off Fix I sci Norm Eng L4.3: Die Berechnung e Image Image Image Image	TENESCALCEQUAL CAN BEEN TO THE SECOND CONTRACT OF THE SECOND CONTRAC	$Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \leq -\pi \Rightarrow$ $Im(z) = -5: -3\pi < -5: -3\pi < -5: -5: -5: -5: -5:$ $Im(z) = -5: -3\pi < -5: -5: -5: -5: -5: -5: -5: -5: -5: -5:$	$z \in D_1 \implies w \in \text{Blatt 1, tot}$ $z \in D_1 \implies w \in \text{Blatt -1}$
TENSICAL CEQUAL EGN ISEPHILD Angle Deg Complex Mode: re^8i Coord On Grid Off Azes On Label Off Fix Iscillar Init Fix Iscillar Init A.3: Die Berechnung e Image: Init	TENSICAL GEOUAL CON I CON ISERFIL D TENSICAL GEOUAL CON ISERFIL D TENSICAL GEOUAL CON ISERFIL D TO STATE STATE TO STATE STATE TO STATE STATE TO STATE STATE TO	$Im(z) = 0; \pi < 0 \ge 0; \pi \rightarrow z;$ $Im(z) = -5; -3\pi < 5 \le -\pi \Longrightarrow$ $I = 1; = 1; = 1; = 1; = 1; = 1; = 1; = 1$	$z \in D_1 \implies w \in Blatt +, tot z \in D_1 \implies w \in Blatt + 1$
TENSICALCEQUAL eqn [SEPH] D Angle Deg 1 Complex Mode: re^8i 0 Cond On Off Grid Off I Hzes On Label Off Display IFix4 I Fix1Scal Norm En3 I I 485165195.4665.9156i 485165195.4665.9156i	TINESCALCEQUAL CONTRACTOR OF CONTRACT OF CONTRACT OF CONTRACTOR OF CONTA	$Im(z) = 0: \pi < 0 \ge 0\pi \Rightarrow z$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -5: -5: -5: -5: -5: -5: -5: -5: -5:$	<pre>> z∈ D₁ ⇒ w∈ Blatt 1, tof > z∈ D₁ ⇒ w∈ Blatt -1 109.1066€180.0000i UN·MAT-Menü: (20+201,10+101,-40-40 i)+List 1 e(List 1) Conjs eList 1 Unit 1 </pre>
TENSICALCEQUALEGN ISBERHING Angle :Deg T Angle :Deg T Coord :On :On Grid :Off :Off Hzes :On :Off DISPLay :Fiz4 :Fiz4 Fiz1 Sci Norm En3 :Display :Fiz4 Additional Sci : Norm En3 :Display :Fiz4 485165195.4665.9156i :Horne En3 :Display 485165195.4665.9156i :Horne En3 :Display	TRMSICALCEQUAL GAN SERPHI D J3+5i+2 5.2915670.8934i (2,-2)+List 1 Abs List 1 Abs List 1 Done Arg List 1 ITSTIMATICPLEICALCINUM folgt mittels einer geeign in.3 stutter stutter 22026.4658 c-147.0422i	$Im(z) = 0; \pi < 0 \ge 0; \pi \Rightarrow z$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -2915$ $5, 2915$	Z∈ D ₋₁ ⇒ w∈ Blatt -1 ^{M-3} ¹ [10-893] 109.1066€180.0000i 109.1066€180.0000i (20+20i,10+10i,-40-40) i)+List 1 Done e(List 1) Done Conjs eList 1 LISTIMATICELXICALCHUMI D
TRNSICALCEQUALEGN MARPHING Angle Deg Complex Mode: Complex Mode: Complex Mode: Cond On Grid Off Azes On Label Off Fix1ScalNormEnS L4.3: Die Berechnung e Ans Inss	TENSICAL CEQUAL CONTRACT TENSICAL CEQUAL CONTRACT TENSICAL CEQUAL CONTRACT V3+51+2 5.2915670.8934i (Z, -Z)+List 1 Abs List 1 Abs List 1 Done Ars List 1 ITENTIMATICELIZATIONUMI CONTRACT folgt mittels einer geeign And ITENENSION SUPE-IB> 22026.4658 c-147.04221	$Im(z) = 0: \pi < 0 \ge 0\pi \Rightarrow z$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -5: -5: -5: -5: -5: -5: -5: -5: -5:$	$z \in D_{1} \implies w \in Blatt +, tot$ $z \in D_{1} \implies w \in Blatt + 1$ $\begin{bmatrix} Mn.3 \\ 2 \\ 109.106666180.0000i \end{bmatrix}$ $I09.106666180.0000i$ $RUN \cdot MAT - Menü:$ $\begin{bmatrix} 20+20i, 10+10i, -40-40 \\ i \end{pmatrix} + List 1 \\ 0one$ $e(List 1) \\ Conjs eList 1 \\ \hline Done$ $Conjs eList 1 \\ \hline Done$ $Conjs eList 1 \\ \hline Done$ $Done$ $Done$ $Done$
TRNSICALCEQUAL eqn is RPHI D Angle :Deg f Complex Mode: re*8i Coord :On Grid :Off Hzes :On Label :Off Fix1sci Hormlens L4.3: Die Berechnung e fn3 (10000) sizers sizers sizers sizers sizers issi Hormlens 485165195.4065.91561	TEMESICAL CEQUAL CONTRACT TEMESICAL CEQUAL CONTRACT J3+51+2 5.2915670.8934i (2,-2)+List 1 Abs List 1 Abs List 1 Done Arg List 1 Image: Contract Contract folgt mittels einer geeign fm.3 Image: Contract Contract Superior Superior <t< td=""><td>$Im(z) = 0: \pi < 0 \ge 0\pi \Rightarrow z$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi$</td><td><pre>> z∈ D₁ ⇒ w∈ Blatt 1, tof > z∈ D₁ ⇒ w∈ Blatt -1 ***********************************</pre></td></t<>	$Im(z) = 0: \pi < 0 \ge 0\pi \Rightarrow z$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi $	<pre>> z∈ D₁ ⇒ w∈ Blatt 1, tof > z∈ D₁ ⇒ w∈ Blatt -1 ***********************************</pre>
TENSICALCEQUALEGN ISBERHIND Angle :Deg 1 Angle :Deg 1 Coord :On :On Grid :Off :Off Hzes :On :Off Jabel :Off :Off DISPLAY :Fix4 :Fix4 Fix1 :Sci Norm Eng :Off 485165195.4665.9156i :Image: Sci :	TRMSICALCEQUAL GAN SERPHI D J3+51+2 5.2915670.8934i (2,-2)+List 1 Abs List 1 Done Arg List 1 Done ITSTIMATICPLEICALCINUM folgt mittels einer geeign in3 i[1.85E> slue-18> 22026.4658 e-147.0422i in3 slue-18> slue-18> slue-18>	$Im(z) = 0; \pi < 0 \ge 0; \pi \Rightarrow z$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; -2915$ $5, 291$	$z \in D_{-1} \implies w \in Blatt +, tot$ $z \in D_{-1} \implies w \in Blatt + 1$ $[109, 1066 \notin 180, 0000i$ $(20+20i, 10+10i, -40-40)$ $i) + List 1 \qquad Done$ $e(List 1) \qquad Done$ $Conjs \ eList 1 \qquad Done$ $Conjs \ eList 1 \qquad Done$ $Conjs \ eList 1 \qquad Done$ $ReP \ eList 1 + List 2 \qquad Done$ $ImP \ eList 1 + List 3 \qquad Done$ $ImP \ eList 1 + List 3 \qquad Done$
TENSICALCEQUAL GIN GRPHI Deg 1 Angle :Deg 1 Complex Mode: re^0i Cond :On :On Grid :Off :Off Hzes :On :Off Display :Fix4 :Fix4 Fix1 :ScilNormEn3 :Off A85165195.4665.9156i :22026> :Inf #85165195.4665.9156i :Inf :Inf #85165195.4655.9156i :Inf :Inf #85165195.4 :Inf :Inf	TENESCALCEQUAL eqn ISEPHI D J3+51+2 5.2915670.8934i (2,-2)+List 1 Abs List 1 Abs List 1 Done Arg List 1 Ima List 1 Ima List 1 State and a constraint of the second	$Im(z) = 0: \pi < 0 \le 0\pi \Rightarrow z$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -5: -2 = -5: -5: -5: -5: -5: -5: -5: -5: -5: -5:$	$z \in D_{1} \implies w \in Blatt +, tot$ $z \in D_{1} \implies w \in Blatt + 1$ $\begin{bmatrix} Mn.3 \\ 0 & 0.090 \end{bmatrix}$ $109.106666180.0000i$ $UN \cdot MAT - Menü:$ $(20+20i, 10+10i, -40-40i)$ $i) + List 1$ $e(List 1)$ $Conjs eList 1$ $LIST[MAT]CPLX[CALCHUM] \rightarrow$ $Done$ $Conjs eList 1$ $Done$ $Conjs eList 1$ $Done$ $Conjs eList 1$ $Done$ $Conjs eList 1$ $Done$ $Done$ $Conjs eList 1$ $Done$ D
TENSICAL CEQUAL & 911 MARPHILD Angle :Deg 1 Angle :Deg 1 Complex Mode: re^8i 0n Grid :On :On Label :Off :Off DISPLAY :Fix4 :Fix4 Fix1 Sci Norml En3 :Image: Sci Norml En3 L4.3: Die Berechnung e :Mage: Sci Norml En3 485165195.4665.9156i :Image: Sci Norml En3 485165195.4665.9156i :Image: Sci Norml En3 485165195.4665.9156i :Sci Norml En3 Mage: Sci Norml En3 :Image: Sci Norml En3 485165195.4665.9156i :Sci Norml En3 Sci Norml En3 :Image: Sci Norml En3 485165195.4665.9156i :Sci Norml En3 Für Image: Sci Norml En3 :Sci Norml En3 Sci Norml En3 :Sci Norml En3 485165195.465.9156i :Sci Norml En3 Für Image: Sci Norml En3 :Sci Norml En3 Sci Norml En3 :Sci Norml En3 485165195.465.9156i :Sci Norml En3 Sci Norml En3 :Sci Norml En3 Sci Norml En3 :Sci Norml En3 Sci Norml En	$\frac{1}{1545} = \frac{1}{20026} = \frac$	$Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -5$ $Im(z) = -5: -5$ $Im($	<pre>> z∈ D₁ ⇒ w∈ Blatt 1, tof > z∈ D₁ ⇒ w∈ Blatt -1 ************************************</pre>
TENSICALCIEQUAL GENUAL GUI	TRMS[CALCEQUAL @91 [SRFH] ▷] TRMS[CALCEQUAL @91 [SRFH] ▷] J3+5i+2 5.2915€70.8934i (Z, -Z)+List 1 Done Rrs List 1 Done Rrs List 1 Done Rrs List 1 Done folgt mittels einer geeign a.22026.4658 e-147.0422i a.UE-18> 22026.4658e147.0422i jut: -13 π < -40 ≤ -11 π ⇒ . > $w \in$ Blatt 2, 5π < 20 ≤ 7 f	$Im(z) = 0; n < 0 = 0; n \neq z$ $Im(z) = -5; -3\pi < 5 \le -\pi \Rightarrow$ $[n,3]$ $[25,2915]$ $5,2915$ eter Listenarithmetik im F $[n,3]$ $[22025)$ $[22025]$ $[22025)$ $[22025]$ $[$	v = Diatt 1, 101 109.1066€180.0000i CONSTREE (20+201,10+101,-40-40) i >+List 1 construction Constrestruction Constrest<
TENSICAL CEQUAL SET IN SEPTIONImage:DegTAngle:DegTComplexMode: re^8iCond:OnBrid:OffPrid:OffImage:DisplayImage <td>The second set of the second</td> <td>$Im(z) = 0; \ n < 0 \le 0; n \ne z;$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi$</td> <td>v = Diatt 1, 101 v = Diatt 1, 101 v = Diatt 1, 101 109.1066€180.0000i 109.1066€180.0000i 2000000000000000000000000000000000000</td>	The second set of the second	$Im(z) = 0; \ n < 0 \le 0; n \ne z;$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5; \ -3\pi < 5 \le -\pi $	v = Diatt 1, 101 v = Diatt 1, 101 v = Diatt 1, 101 109.1066€180.0000i 109.1066€180.0000i 2000000000000000000000000000000000000
TENSICAL CEQUAL SEPPHINGTENSICAL CEQUAL SEPHINGAngleComplexMode:CondOnGridOffPixesLabelOffDISPLAYFixesCondLabelOffDISPLAYFixesCondLabelOffDISPLAYFixesCond<	The second set of the second set of the set of the second set of the second set of the set of the second set of the second set of the set of the second set of the set of the second set of the set o	$Im(z) = 0: \ \pi < 0 = 0; \ \pi \neq z$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi $	<pre> Z∈ D₁ ⇒ w∈ Blatt 1, 10 z∈ D₁ ⇒ w∈ Blatt -1 instant 2, 10 instant 2, 10</pre>
TENSICAL CEQUAL SEPTIONTENSICAL CEQUAL SEPTIONAngleComplexMode:reftCoordOnGridOffDisplayFixScaleImage:CoordImage:CoordImage:CoordImage: <td>THEFT CALCECULATE ON THE SECOND SEPTION SET ALL CALCECULATE ON THE SECOND SET ALL CALCENDES SET ALL C</td> <td>$Im(z) = 0: \pi < 0 = 0\pi \Rightarrow z$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi$</td> <td>Z∈ D.1 ⇒ w∈ Blatt 1. M.3 109.1066€180.0000i 109.1066€180.0000i CONSTREE (20+201.10+10140-40) i)+List 1 c(List 1) Done Conjs eList 1 LISTIMATICELXCALCHUMI D Conjs eList 1 Done Conjs eList 1 Done Conjs eList 1 Done ImP eList 1+List 2 Done ImP eList 1+List 3 Done StatGraph1 Graph Type StatGraph1 Graph Type Wank Type Ist</td>	THEFT CALCECULATE ON THE SECOND SEPTION SET ALL CALCECULATE ON THE SECOND SET ALL CALCENDES SET ALL C	$Im(z) = 0: \pi < 0 = 0\pi \Rightarrow z$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi $	Z∈ D.1 ⇒ w∈ Blatt 1. M.3 109.1066€180.0000i 109.1066€180.0000i CONSTREE (20+201.10+10140-40) i)+List 1 c(List 1) Done Conjs eList 1 LISTIMATICELXCALCHUMI D Conjs eList 1 Done Conjs eList 1 Done Conjs eList 1 Done ImP eList 1+List 2 Done ImP eList 1+List 3 Done StatGraph1 Graph Type StatGraph1 Graph Type Wank Type Ist
TENSICAL CEQUAL CENTRE SEPTINGIngle:DegTComplexMode: re*8iComplexMode: re*8iCond:OnBrid:OffPixes:OnLabel:OffDISPlay:Fix4Fix Sci Horm En3L4.3: Die Berechnung eMa3(TISES)22026>3LUE-IB>485165195.4665.9156iFür Im(z)={-40, 10, 20}g3 $\pi < 10 \le 5\pi \Rightarrow z \in D_2 =$ L4.4: Die Darstellung im eine geeignete BeiBetrachtungsfensterMa1Ma2Sch08Ma2Sch08Ma2Sch08Ma2Sch08Ma2Sch08Ma2Sch08Ma3Sch08ComplexComp	The second set of the set of the second set of the second set of the second set of the second set of the s	$Im(z) = 0: \ n < 0 = 0: \ n \neq z$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: \ -3\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: \ -3\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: \ -3\pi < 5 = -5: \ -3\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: \ -3\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: \ -3\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: \ -3\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: \ -3\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: \ -3\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: \ -3\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: $	<pre>c D₁ → we Didtt 1, 101 > z∈ D_{.1} ⇒ w∈ Blatt -1 ^{m.3} 109.1066€180.0000i 2009.1066€18000i 2009.1066€18000i 2009.1066€18000i 2009.10000i 2009.10000i 2009.10000i 2009.10000i 2009.10000i 2009.10000i 2009.10000i 2009.10000i 2009.10000i 2009.10000i 2009.10000i 200000i 200000000000000000000000</pre>
TENSICAL CEQUAL 2911 MARPHILE Ingle Deg T Angle Deg T Complex Mode: re^8i On Grid Off Image: State and State	The second set of the second	$Im(z) = 0: \ n < 0 = 0: \ n \neq z$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 \le -\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: \ -3\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: \ -3\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: \ -3\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: \ -3\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: \ -3\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: \ -3\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: \ -3\pi $ $Im(z) = -5: \ -3\pi < 5 = -5: $	$c = D_1 \rightarrow w \in \text{Blatt 1}, \text{ for } v \in \text{Blatt 1}$ $c = D_1 \rightarrow w \in \text{Blatt -1}$ $i = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0$
Thissical degual equivalent is prime The set of the	THE SCALCEQUAL CONTRACT OF A SECOND	$Im(z) = 0: \pi < 0 = 0\pi \Rightarrow z$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi \Rightarrow$ $Im(z) = -5: -3\pi < 5 \le -\pi $	<pre>c D₁ → we Didtt 1, 10 > z∈ D_{.1} ⇒ w∈ Blatt -1 109.1066€180.0000i 200.109.1066€180.0000i 200.109.1066€180.0000i 200.109.1066€180.0000i 200.109.1066€180.0000i 200.109.1066€180.0000i 200.109.1066€180.0000i 200.109.1066€180.0000i 200.000i 200.109.1066€180.0000i 200.000i 200.109.1066€180.0000i 200.000i 200.109.1066€180.0000i 200.0000i 200.</pre>

Kapitel 5:

L5.1: Die Lösung werden im RUN·MAT-Menü ausgerechnet und mit einer Hintergrundgraphik (Einheitskreis) im STAT-Menü dargestellt:

AnS .	Ĥn.S	AnS .	йљ\$
	ICTEST 2 <mark>(CTEST)</mark> 3 (2-13) 4L(2-13) 4L(2-45)		IF 1845; 2 18135; 3 18-135; 4 18-135; 4 18-4457
1.0000 0 45.0000i	1.0000e135.0000i	1.0000e-135.0000i	1.0000e-45.0000i
Angle Deg 1 Complex Mode:re~8i Coord :On Grid :Off Azes :On Label :Off Display :Fiz4 Deg[Rad]gra]	-1+2 1.0000c180.0000i (JJZ,JJZxe(i×1×2π/4), JJZxe(i×2×2π/4),JJZxe (i×3×2π/4)) Done LISTIMATICPLXICALCINUMI D	Done List Ans+List 1 ReP List 1+List 2 ImP List 1+List 3 Done LISTIMATICPLXICALCINUM D	List List 2 List 3 List 4 10051 0.0001 0.0001 2 101351 0.000 0.0001 3 10-130 0.000 0.000 4 10-451 0.0001 0.000 5 1.0000645.00001 GRPHICALC DELIDEUALINS D
Betrachtunesfenster Main = 3 scale: 1 dot : 0.04761904 Ymin = -1.5 maz : 1.5 INITIRISISTOISTOIRCE	Grafikfunkt.:Param XtlB1×cos T Vt1B1×sin T Xt2: Vt2: Xt3: Vt3: SELIDEL TYPE GMEMIDRAWI D	Speichern in Bildspeicher Pict[1~20]: 1	Stot dimini territori R∈Wählen Sie L Bildspeicher Fu G Pict[1~20]: 1 Banor conto territori Hngle :Rad ↓ Nont FICT
StatGraph1 Graph Type :Scatter		Angle :Deg Answer Type :Complex	-1+Z -1
XList :List2 YList :List3 Frequency :1 Mark Type :•	Abschließend die exakte	Display :Fiz4	
	Darstellung im CAS -Menü:	Degirad	TRNSICAL CEQUAI EGN IGRPHI D
<u>cExpand(112)</u> 12 <u>11</u> 2 2	<u>cEzpand(JJZ×e(i×2π/4)</u> - JZ₁JZi 2 2	<u>cExpand(JJZ×e(i×4π/4)</u> <u>-J2_J2i</u> 2_2	<u>cEzpand(JJZ×e(i×6π/4)</u> J <u>2_J2i</u> 22
TRNS CALCIEQUAL CAN IGRPHI D	TRNSICAL CIEQUAL EGN IGRPHI D	TRNSICAL CIEQUAL CAN IGRPHI D	TRNSICALCIEQUAL CAN IGRPHI D

L5.2: Für Teilaufgabe a) werden verschiedene Lösungsvarianten gezeigt, b) und c) sind analog zu lösen. Die exakte Lösung im **CAS**-Menü ist hier von der Darstellung her nicht in jedem Fall gut zu vereinfachen:

Answer Type :Complex Display :Fix4	$z = \frac{-6\sqrt{3}i - 1}{6\sqrt{2}i - 1}$	SOIVE(2^6=-1/2+13/2×1 ▲ 박코 Z= <u>4131-1</u> ♥2 ₩ TENSICALCIEQUALEMINISEPHI D	<u>solve(2~6=-1/2+13/2×1</u> Z= <u>-⁶173i-1_15⁶173i-1i</u> 2 ⁶ 172 2 ⁶ 172 • 6 телта тобрата телтасассеоинеерияерно о
<u>solve(2^6=-1/2+J3/2×i</u> 2 ⁶ 12 2 ⁶ 12 2= <u>613i-1_J36J3i-1i</u> 2612 2 ⁶ 12 ∎ TENSICALCEQUALEEN BREFH D	SOlve(2^6=-1/2+J3/2×i 2 72 272 Z=- ⁶ J <u>3i-1</u> + <u>J3⁶J3i-1</u> i 2 ⁶ 2 2 ⁶ 2 TENSICAL GEQUAL CAN BEEFI	2*6=-1/2+J3/2×i,2) ^A 6 [3i-1,35] 2= <u>4[3i-1,35]</u> 2 2 2 2 2 2 2 2 2 2 2 2 2	CExPand(eqn(1)) Z=-cos(20)-sin(20)·i TRMS[CALCEQUALEQNALEQN]
CExPand(eqn(2)) Z=cos(20)+sin(20)•i 🛾 TRHS[CALCEQUA] eqn MaRPHI p	$ \frac{\text{CExPand(eqn(3))}}{2} = \frac{-\cos(2\theta)}{2} + \frac{\sqrt{3} \cdot \sin(2\theta)}{2} = \frac{1}{2} $ TRNS[CALCEQUAL eqn IGRPH]	CExPand(eqn(3)) 20) + 2 3 Comparison 4 1	CEXPand(eqn(3)) 1(20) - 3.cos(20) 2 2 1 1 1 TRNS CALCEQUAL CAN BEEFIE
$\frac{\text{CExpand(eqn(4))}}{\text{Z}=\frac{\cos(20)}{2}+\frac{\sqrt{3}\cdot\sin(20)}{2}}$	$\frac{cEzpand(eqn(4))}{n(20)} \sqrt{3} \cdot cos(20)}{2} \mathbf{i} \mathbf{m}$	$\frac{\text{cEzpand(eqn(5))}}{\text{Z} = \frac{-\cos(2\theta)}{2} - \frac{\sqrt{3} \cdot \sin(2\theta)}{2}}$	$\frac{cEzpand(eqn(5))}{1(20)} + \frac{\sqrt{3} \cdot cos(20)}{2} $

cExpand(eqn(6)) 7 <u>=cos(20)_3•sin(20</u> .	cExpand(eqn(6)) .n(20), <u>3.cos(20)</u>]; m	Angle Rad Answer Type Complex Display Fix4	-1/2+√3/2×i→A √3i_1
- 2 2 u s	¶ ² · 2) ≭u		2 2
Abschließend im CAS-Mer	nü die exakte Darstellung de	r Hauptwurzel (Winkel im B	(<u>TRHSICALCIEQUALEAN GREHL D. 1)</u> DGenmaß):
Abs A÷r	$-tan^{-1} (-1/\sqrt{3}) + \pi/2 \rightarrow 0$	(r×e(i×a))^(1/6)→W	cEzpand(W)
1	2π 3	$6 \overline{\frac{\sqrt{3}i}{2} \frac{1}{2}}$	$\cos\left(\frac{\pi}{9}\right)$ + $\sin\left(\frac{\pi}{9}\right) \cdot i$
CO THEST X I STANLAY PREMI		TRASICAL GEOCHI EAN MARPHI DI II	
Nun der Losungsvorschlag	Im EQUA-Menu mit Betrach	tung einer Nullstellengleichu	Ing, dann RUN · MAI - Menu:
Grad[4~30]?		au∧"+ai∧"+ai–0 <u>+ aa au as a6</u> [0 0 0 005 000	aux * +aix * + * + + a = 0 * 1 [0.9996-0.9996 2 0.166-0.6421; 3 0.1136+0.9848; 4 -0.113-0.9848; 6 9392+0 3420;
	EDITIDELAICLE SOLU	EDITIDELA CLR SOLU	8.939170.34201 REPT
auX ⁵ +a1X ⁵ +···+a6=0 8 3 0.1136+0.9848; 4 -0.113-0.9848; 5 -0.165+0.6421; 6L 20.999907-0.3420 ; REPT	Angle :Deg ↑ Complex Mode:re^ði Coord :On Grid :Off Axes :On Label :Off Display :Fix4 Fix ScilNormEng	#n.S I[[2][2]3] 2 0.999> 3 0.999> 4 10-16> 5 0.999> 1.0000€20.0000i	n.S I[IEI9.>] 2 INSEE 3 0.999> 4 IE-IE> 5 0.999> 1.0000€80.0000i
#nS 20.999> 3 IFFFF 4 IF-FF 4 IE-F5 5 0.999> 1.0000€140.0000i	#n3 0 9.> 20.999> 30.999> 4 2- 53 50.999> 1.0000€-160.00001	#nS 20.999> 30.999> 4 (e-16> 5 <u>INCER</u> 1.0000€-100.00001	AnS 2 0.999> 3 0.999> 4 10-16> 5 0.999> 6 <u>100000</u> 1.00000-40.00001
-1/2+J3/2×i→Z 1.0000€120.0000i (0,1,2,3,4,5)→List 1 Done 6×JZ×e(i×List 1×2π/6) Done	Done List Ans+List 2 ReP List 2+List 3 ImP List 2+List 4 Done Done	List List 2 List 3 List 4 1 0 1019.0 0.9396 0.342 2 1 0.9990 0.1366 0.6447 3 2 0.9990 0.7660 0.6427 4 3 10-160 0.9390 0.342 5 4 0.9990 0.1730 0.3420 0.0000	StatGraph1 Graph Type :Scatter XList :List3 YList :List4 Frequency :1 Mark Type :•
LISTIMATICELSICALCINOMI D	ILISTIMATICPLAICALCINUMI DII OTATINATICPLAICALCINUMI DII	<u>GRPHICALCI DEL IDEUALINS I DI I</u>	
Der Losungsvorschlag ir	n SIAI-Menu mit Hinterg	Irundgrapnik (Einneitskre	is, vgi : L 5.1):
Betrachtungsfenster Max 3 scale:1 dot :0.04761904 Ymin :-1.5 max :1.5 INITIRIESTOISTOIRCE	Stat Wind : Manual Resid List : None List File : File1 Func Type : Param Graph Func : Off Backsround : Picti Hngle : Deg J NontPict	K=0. 9396926201 Y=0. 3420201433	E=0. 1736481776 Y=0. 984807753
X= -0. 766044443 Y=0. 6427876096	X= -0. 9396926207 Y= -0. 3420201433	X= -0. 13648 116 Y= -0. 984801153	X=0. 766044443 Y=-0. 6427876096
Die sechs Wurzelwerte	wurden wieder im mathen	natisch positiven Drehsin	n entsprechend der
Winkelraumzuordnung d	largestellt.		
L5.3: Die Zahlen werden	im RUN·MAT-Menü in List	t1 und die Blattnummern in	List2 abgespeichert
(2,0,1,0,2)→List 2,0,1,0,2)→List 2,0,1,0,2)→List 2,0,1,0,2)→List 2,0,1,0,2)→List	t 2×2π/3)+List 3 List 3 Done	Func Type :Comp Func Type :Connect Draw Type :Connect Derivative :Off Fingle :Deg Complex Mode:re^@i Coord :Dn 4	по- IEE25001 2 везо: 3 zer65; 4 zev5; 5LI.460>J 3. адале - 90. адалі
LISTIMATICPLACALCINUM	LISTIMATICPLACALCINUM	Degladigra	
n.3 IF3e-90; 2 E2E00 3 20155; 4 2045; 4 2045; 5 L:467≻J 3.0000€30.00001	₩.5 I[se-90;] a sead: a <u>321558</u> u zeus: sliuus> 2.0000€165.00000i	An3 Ifae-90; 2 aean; 3 2015; 4 2015; 4 2015; 5 1.467≻] 2.0000€45.0000i	h.3 Ifae-90; a aeao; a zeios; u zeuss; u zeus; su teus; 1.46786-66.1450i
L			L

L5.4: Die Lösungen zu a)	und b) werden dargestellt	, weitere Lösungen sind en	tsprechend zu finden.
<u>so</u> 	lve(ZZ=-5+12i,Z) -2-3i n		аха+рх <u>5+</u> сх+q=0 — — — — — — — — — — — — — — — — — — —
		ir b) erhâlt man im EQUA-	
ernalt man un-	M		
milleidar iur a).	ISICALCIEQUALEGIN IGRPHI D	iu uann im CAS-ivienu.	-12.0000-5.00001 EDITIOELALCE
aX3+PX5+CX+G=0	aX3+PX5+cX+q=0	aX3+PX5+cX+q=0	aX3+PX5+cX+q=0
	<u>،</u> ۱ <u>۲ 2.331+0.3085</u> ; ۲	<u>،</u> ۱۲ 2.331+0.3085i	
2 -0.898-2.1729; 3L -1.432+1.8644;J	2 -0-898-2-17297 3 - 1-432+1-8644;]	2 -0.898-2.1729; 3L -1.432+1.8644; L	2 2. 35130-112.4; 3 2. 35130121.53;]
2.3310+0.3085i	-0.8983-2.1730i	-1.4327+1.8644i	2.3513e7.5400i
REPTI aX3+bX2+cX+d=0	REPTI aX3+bX2+cX+d=0	Func Type :Param	REPTI
× 1[2.351301.5399i]	× 1[2.351301.5399i]	Angle :Rad Complex Mode:a+bi	0
2 2.35130-112.41 3L2.35130127.531J	2 2.35130-112.4; 3 2.35130129.531	Display :Fiz4	(:)
2.35136-112.4600i REPT	2.35136127.5400i REPT	Realla•baire*ea	
solve(Z^3=12+5i,Z)	simplify(setRisht(ean	setRisht(eqn(3)))	approx Ans -1.4327+1.8644i
$-313.cos \frac{tan^{-1}}{-313}$	$\frac{313}{13} - \cos \left[\frac{\tan^{-1}\left(\frac{3}{12}\right)}{-12} \right] - 1$	$\frac{313}{513}$ -cos $\frac{\tan(\frac{3}{12})}{-1}$ -c	
Z= <u></u>	<u>,((3)</u>	<u>,((3)</u> »	
<u>♡(, ,(,5,)♡</u> TRNSICALCIEQUALERINIGRPHI_D	TRNS CALCEQUALERN (GRPH) D	TRNSICALCIEQUAL CAN IGRAHI D	TRNS CALCEQUAL CAN IGRAHIE D
solve(Z^3=12+5i,Z)	simplify(getRight(eqn	<pre>setRisht(eqn(4)))</pre>	approx Ans
$\begin{bmatrix} \bullet \\ \bullet \end{bmatrix}_{3 \times \bullet} = \begin{bmatrix} \tan^{-1} \left(\frac{5}{12} \right)^{\bullet} \end{bmatrix}$	$\operatorname{Spre}\left[\left(\operatorname{tan}\left(\frac{5}{12}\right)\right)\right]$	$_{3\pi\pi\pi} \left[\left[\tan^{-1} \left(\frac{5}{12} \right) \right] \right]$	2.3310+0.3085i
$Z=413 \cdot \cos\left(\frac{-3}{5}\right) \square$	13[cos[- <u>3</u>]+s₩	$\sqrt{13}\left[\cos\left(-\frac{3}{3}\right)+s\right]$	
Tan-I Tom Clriswiransi I din	TRNS CALCEQUALE 91 (SRPHL D		TRNSICALCEQUALERN IGRPHI D
<pre>solve(Z^3=12+5i,Z)</pre>	simplify(getRight(ean	<pre>setRisht(eqn(5)))</pre>	approx Ans
▲	$\left _{3 \times 7} \left(\left _{a \neq a} \left[\operatorname{tan}\left(\frac{5}{12}\right) \right] \right) \right $	$\left _{3 \times 7} \left(\left _{-4 \times 7} \left[\operatorname{tan}^{-1} \left(\frac{5}{12} \right) \right] \right) \right $	-0.8983-2.1730i
-313.cos	$\frac{\sqrt{3}}{\sqrt{3}}$	$\frac{\sqrt{3}\left(-\left(\sin\left(-\frac{3}{3}\right)\right)\right)}{3}$	
	TRNSICALCIEQUAI CAN IGRPHI D	CLR SW IRANS D	TRNSICALCIEQUAL CAN IGRAHI D
L5.5 und L5.6: Die Lösun	aen werden. sofern im CA	S-Menü erhältlich, wieder a	als Bild angegeben:
simplify(((-X²))	simplify(J(-1)XJ(X2))	Angle Rad	1(X5)
$\sqrt{-x^2}$	$\sqrt{x^2}i$	Hnswer Type Real Display :Fiz4	181
L5.5b)			
TRNSICALCIEQUALEGN IGRPHI DI I	ITRNSICALCIEQUALERINISRPHILD IJT (-179)	IREALICHIXI	TRNSICALCIEQUALEGN (GRPH) D []
7i	i		12-3i
	3	$155 d$ <i>i</i> · $1r \cdot v$	
LJ.J a)	L3.30)		L5.5†)
TRNSICAL CIEQUAL CAN IGRPHI D	TRNSICALCIEQUALERN IGRPHI D		TRNSICALCIEQUALEAN IGRPHI D
√(-12)+√(-8)+√(6) √15i .ee.	approz Hns 0.0000+7.0671i	-3	-4
5+243i+242i			
L5.5 g)		L5.6 a)	L5.6 b)
TRNSICAL CIEQUAL CAN IGRPHI D	TRNSICAL CIEQUAL CAN IGRPHI D	TRNSICAL CIEQUAL CAN IGRPHI D	TRNSICALCIEQUAL CAN IGRPHI D
L5.6c) Fallunterscheidun	g: $a \cdot b \ge 0 \implies i \cdot (a \cdot b)^{1/2}$	$a \cdot b < 0 \implies \operatorname{sgn}(b)$	$\cdot a \cdot b ^{1/2}$.
L5.6d) Fallunterscheidun	g für $a \neq 0$: $a > 0 \implies a$	$i/a^{1/2}$, $a < 0 \implies 1/ $	$a ^{1/2}$.
L5.6 e) <i>i</i> ⋅ sgn(<i>y</i> - <i>x</i>) für	$x \neq y$. L5.6 f) $i \cdot a - a $	<i>b</i> . L5.6g) -6·3 ^{1/2}	² / a .
12→N 12.0000	e(iList 1×2π/N)→List 2	Mode Comp Func Type Param	AnS IC ID
Seq(X-1, X, 1, N, 1) +List	~ Done RePlist 2+Li⊂t 3	Draw Type :Connect Derivative :Off	2 19922 9 1993
L5.7: N=12	ImP List 2+List 4	Angle Deg Complex Mode:re^Ai	4 1090; 5 0.999>
	Done	Coord :On ↓ Deg[Rad]gra]	1.0000 e 30.0000i

Der Index k = 0, 1, 2, ..., N des Winkelraumes wurde als Zahlenfolge in List1 abgespeichert. List2 enthält die Wurzelwerte. Als Hintergrundgraphik wurde wieder der Einheitskreis verwendet, vgl. L 5.1. Die folgenden Bilder betreffen den Fall N = 2. Die anderen Lösungen überlegt man sich entsprechend.

L5.8: Hierzu erfolgen keine gesonderten Lösungen, die teilweise schon in L5.4 mit angegeben wurden.

Kapitel 6:

L6.1: Die Lösungsstrategie sieht hier folgendermaßen aus: Die Indizes (Blattnummern für *z*, bzw. Parallelstreifenindex für $w = \ln z$) werden in List1 abgespeichert. Die Logarithmen zu a) in List2, deren Real- bzw. Imaginärteil in List3 bzw. List4, zu b) entsprechend in List5 bis List7 und zu c) entsprechend in List8 bis List10 (Im RUN·MAT-Menü). Damit können am Ende alle Ergebnisse in einem(!) Scatterplot (STAT-Menü)angezeigt werden. Als Hintergrundbild (im GRPH·TBL-Menü erzeugt) werden die entsprechenden Parallelstreifen gezeigt, so dass die Lage der jeweiligen Einzelwerte im richtigen Parallelstreifen mit TRACE unmittelbar abgefragt werden kann.

.

		Losu	ngshinweise - Kapitei o
List List 2 List 3 List 4 -2 36292 3.2958 -10.99 2 -1 3.2953 3.2958 -4.112 3 0 3.2953 3.2958 1.5101 4 13.2953 3.2958 1.5101 5 2 3.2958 1.2958 1.4131 3.2958-10.99561 SRPHCALOPELIDELATINS p StatGraph1 : DrawOn StatGraph2 : DrawOn StatGraph3 : DrawOn	StatGraph1 Graph Type :Scatter XList :List3 YList :List4 Frequency :1 Mark Type : IXIII	StatGraph2 Graph Type :Scatter XList :List6 YList :List7 Frequency :1 Mark Type :• GPH1GPH2IGPH2I • • •	StatGraph3 Graph Type Scatter XList List9 YList List10 Frequency 1 Mark Type : GPH1GPH2IGPH3
on loff [DEAW]	O O O 0 0 0 0 8 0 7 0 8 9 0 0 8 9 19151 0		ی دی در دی در
Betrachtunesfenster Xmin -0.5 max :3.5 scale:1 dot :0.03174603	a) Darstellung der Logar	b) ithmenwerte der ieweilige	c) n Teilaufgabe senkrecht
Ymin :-16 maz :16 INTITIKIGISTOISTOIRCE Die folgenden Bilder zei	übereinander. Angeze	igt ist jeweils der Hauptwo	ert im Parallelstreifen D ₀ . ü (Altoradeinstellung):
$\frac{\pi i}{2}$ +3.ln(3)	<u>πi</u> 3	$\frac{3\pi i}{4} + 3 \cdot \ln(2)$	10 (2510625.4825i 10 (cos 60+isin 60) 1.0472690.0000i 1n (-4J2+i×4J2) 3.1426648.5702i
TRNSICALCIEQUALERN ISRPHI D	TRNSICALCIEQUALEAN ISRPHI D	TRNSICALCIEQUALEAN ISRPHI D	
L6.2: Die Lösungen werd	den im CAS-Menü unter H	inzunahme von $k \cdot 2\pi i$ ($k =$	$0, \pm 1, \pm 2,$) angezeigt:
<u>cEzpand(collect(ln (-</u> π(2K+1)i+ln(2)	ln (-2)+2Κπi,π)) π(2K+1)i+ln(2)	<u>cEzpand(collect(ln (-</u> π(2K+ <u>3</u>)i	(-1/J2+i/J2)+2Kπi,π)) π(2K+ <mark>3</mark>]i
TRNSICAL CIEQUAL CAN ISRPHI D	CLR SW IRANS D	CLR SW RANS D	CLR SW IRIANS D
$\frac{TENS[CalcleQUALegn[SEPH] D]}{CEZPand(collect(ln i + \pi (2K + \frac{1}{2})i)$	$\frac{\text{CLR}[SW[RANS]]}{\text{collect(ln i+2K\pi i,\pi))}} \pi \left(2K + \frac{1}{2}\right) i$	Interessant ist hiel Kombination der Be cExpand(collect(,	The second seco
TENSICALCEQUALEMN ISERTION CEXPAND(collect(ln i+ $\pi(2K + \frac{1}{2})i$ CLRISW RANSI CLRISW RANSI	CLR SW RANS collect(In i+2K π i, π)) π (2K+ $\frac{1}{2}$)i CLR SW RANS confort inspessant durch ein	Interessant ist hier Kombination der Be cExpand(collect(,	CLRT SWIRANS
TENSICAL CEQUAL EGN ISEPHI D CEXPAND(COLLECt(In i+ $\pi(2K+\frac{1}{2})$ i CLRISWIR-ANSI CLRISWIR	CLR SW RANS Collect(In i+2K π i, π)) π (2K+ $\frac{1}{2}$)i CLR SW RANS collect(In i+2K π i, π)) π (2K+ $\frac{1}{2}$)i CLR SW RANS collect(In i+2K π i, π)) π (2K+ $\frac{1}{2}$)i π (2	CLRI SW IRANS Interessant ist hier Kombination der Be CExpand(collect(, e geeignete Listenarithmetik Mn.S I [I.416>]	CLR SW IRANS Γ r die fehle fehle •• π)) (RUN·MAT-Menü) erzeugt: III.416> 11.416> III.416> 10.99>
TENSICAL CEQUAL EGN ISEPHI D CEXPAND(Collect(In i+ π(2K+1/2)i CLRISW RANSI State Ransi CLRISW RANSI CLRISW RANSING State Ransi CLRISW RANSING State Ransi CLRISW RANSING	CLR SW RANS collect(In i+2K π i, π)) π (2K+ $\frac{1}{2}$)i CLR SW RANS constraints gesamt durch einer sofort insgesamt durch einer $\frac{1}{2}$ $\frac{1}{2$	CLR SW RANS Interessant ist hiel Kombination der Be CExpand(collect(, e geeignete Listenarithmetik #n5 (1.416) 3 (1.416)	CLRI SW IRANS Γ fehle •• fehle •• π)) (RUN·MAT-Menü) erzeugt: III.993 III.993 III.995 8.0000+4.7124i
TENSICAL CEQUAL & ST MERPHI CEXPAND(Collect(In i+ π(2K+1/2)i CLRISW RANSI CLRISW RANSI	CLR SW RANS collect(In i+2Kπi,π)) π(2K+1/2)i CLR SW RANS color insgesamt durch eine sofort insgesamt durch e	CLR I SW IRANS Interessant ist hier Kombination der Be CExpand(collect(, e geeignete Listenarithmetik Interessant Interessant Interessant e geeignete Listenarithmetik Interess Interessant Interest Intest Interest	CLR EW IRANE fehle fehle π)) (RUN·MAT-Menü) erzeugt: (RUN·MAT-Menü) erzeugt: (RUN·MAT-Menü) erzeugt: (RUN·MAT-Menü) erzeugt: 0.000+4.7124i .0000+4.7124i
TENSICAL CEQUAL GAN BERFH CEXPAND(COLLECt(ln i+ $\pi(2K+\frac{1}{2})i$ CLR ISW BRANS CLR ISW BRANS I (1.415) I (1.415)	$\frac{\text{CLR} [SW \text{RANS}]}{\text{collect(In i+2K\pi i,\pi))}}$ $\pi \left(2K + \frac{1}{2} \right) \mathbf{i}$ $\frac{\text{CLR} [SW \text{RANS}]}{\text{clr} (2K + \frac{1}{2}) \mathbf{i}}$ $\frac{\text{clr} (2K + \frac{1}{2}) \mathbf{i}}{\text{clr} (2K + \frac{1}{2}) \mathbf{i}}$ $\frac{\text{clr} (2K + \frac{1}{2}) \mathbf{i}}{\text{clr} (2K + \frac{1}{2}) \mathbf{i}}$ $\frac{\text{clr} (1 + \frac{1}{2}) \mathbf{i}}{\text{clr} (1 + \frac{1}{2}) \mathbf{i}}$ $\frac{\text{clr} (1 + \frac{1}{2}) \mathbf{i}}{\text{clr} (1 + \frac{1}{2}) \mathbf{i}}$ $\frac{\text{clr} (1 + \frac{1}{2}) \mathbf{i}}{\text{clr} (1 + \frac{1}{2}) \mathbf{i}}$ $\frac{\text{clr} (1 + \frac{1}{2}) \mathbf{i}}{\text{clr} (1 + \frac{1}{2}) \mathbf{i}}$ $\frac{\text{clr} (1 + \frac{1}{2}) \mathbf{i}}{\text{clr} (1 + \frac{1}{2}) \mathbf{i}}$ $\frac{\text{clr} (1 + \frac{1}{2}) \mathbf{i}}{\text{clr} (1 + \frac{1}{2}) \mathbf{i}}$	CLRI SW IRANS Interessant ist hiel Kombination der Be CExpand(collect(, e geeignete Listenarithmetik Interessant Interest	CLRIEW RANS r die fehle π)) (RUN·MAT-Menü) erzeugt: n.3 1[1.4165] 1[1.4165] 1[1.4165] 1[1.4165] 1[1.4165] 1[1.4165] 2[1.4165] 3[10.935] 1[1.935] 1[1.935] 1[1.935] 1[1.935] 2[1.4165] 3[10.935] 2[1.4165] 3[10.935] 3[10.935] 3[10.935] 0.0000+4.7124i mgen ergeben sich analog: CEzrand(collect(ln (1) ln(17) $2[-t.an-1(4) \cdot i]$
TENSICAL CEQUAL & SIN ERPHINE CEXPAND(Collect(ln i+ $\pi(2K+\frac{1}{2})i$ CLRISW BRANS CLRISW BRANS L6.3: Die Lösungen werder $n.3$ $i[1.4165]$ $2[1.4165]$ $3[10.995]$ $4[1.4165]$ $3[10.995]$ $4[4.7125]$ $5[20000]$ $5[20000]$ $4[4.7125]$ $5[20000]$ $5[20000]$ $6.0000+28.2743i$ $0.0000+28.2743i$ CEXPAND(Collect(ln (1)) $(12\pi-tan^{-1}(4))i + \frac{1n(17)}{2}$ TENSICAL CEQUAL CENTER FRIDE $1n (1-4i)+0\times2\pi i, \pi)$ $1n(17) - tan^{-1}(4) = i$	CLR SW RANS D collect(In i+2K π i, π)) π π $2K + \frac{1}{2}$ i clr SW RANS D sofort insgesamt durch einer $n S$ i i i	CLRI SW IRANS Interessant ist hiel Kombination der Be CExpand(collect(, e geeignete Listenarithmetik Interessant Interessant Interessant Interessant Interessant Kombination der Be CExpand(collect(, e geeignete Listenarithmetik Interessant Interest Intest Interest	CLR SW RANS c die fehle π)) (RUN·MAT-Menü) erzeugt: $n \cdot 3$ $1 \cdot 4 \cdot 15^{2}$ $1 \cdot 4 \cdot 15^{2}$ $2 \cdot 15^{2}$ $1 \cdot 4 \cdot 15^{2}$ $1 \cdot 15^{2}$

D

TRNSICALCIEQUAI CAN IGRPHI D

CLR SW RANS

L6.5: Die Lösung a) wird dargestellt (CAS-Menü). Weitere Lösungen ergeben sich analog.

• •		<u> </u>	0
cExpand(ln (-5+12i)+2	ln (-5+12i)+2Kπi)	cExpand(ln (-5+12i)+0	approx Ans
$(12) \cdot (12)$	(12)	$(12), (12), \dots, (17)$	2.5649+1.9656i
[-tan=[==]+2πκ+π] 1+1n	$\ [\frac{1}{5}]^{+2\pi K + \pi}]^{1 + \ln(13)} \ $	[-tan ⁺ [😤]+π] 1+In(13)	
	J Š ŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚŚ	,	
CLR SW RANS D	CLR SW RANS D	CLR SW RANS D	TRNSICALCIEQUAI EGN IGRPHI D

L6.6: Die Darstellungen wurden z.T. bereits in L6.3 angegeben. Weitere Umformungen sind etwa folgende:

Angle : P	Rad 1	(6,0,2,1,4,2)→List 1	AnS Instantosta	AnS all august
Coord :0	Un	(1-4i,1-4i,-i,-i,-1,-	2 1.940>	3 10.99>
Grid Dates D	Utt Off	1}→List 2 Done	3 (0.99) 4 4.912)	4 4. 112> 5 28. 21>
Label 10	Ōḟḟ Ei∼4	ln List 2+2List 1×πi⊧	5 28-27> 36 4009#1 5319#	64 (5-70)
Realla•bire*#i	F124	LISTIMATICPLACALCINUM D	36.400961.33191	13.100061.31001

L6.7: Die Aufgabe besitzt wegen der Periodizität der komplexen e-Funktion unendlich viele Lösungen, die im **CAS**-Menü nicht erhalten werden können. Formal ist $z = \ln (e^{3-4i}) =$ "Hauptwert" + "Periodizität". Die ersten Bilder zeigen den Hauptwert $z = \ln (e^{3-4i}) = 3-4i+3\cdot 2\pi i = 3+2,283185307i$ an:

e(3 -4i)) -13.12878308 +15.20078446i	approx_e(3-4i) -13.12878308+15.200784	approx ln Ans 3+2.283185307i	approz ln (e(3-4i)) 3+2.283185307i
ln Ans	3+2.283185307i	•		
LISTIMAT		TENSICAL GEQUAI EGN IGREHI D	TRNS ICALCIEQUAI E 911 ISRPHI D	TENSICAL CIEQUAL GAN ISRPHIL D

Ohne **approx**-Befehl unterscheiden sich die angezeigten Ergebnisse im **RUN**·**MAT**-Menü und **CAS**-Menü: Während im **RUN**·**MAT**-Menü sofort der Hauptwert angezeigt wird, erhält man für *z* im **CAS**-Menü lediglich einen Nebenwert. Die allgemeine Lösung ergibt sich durch Hinzunahme der "Periodizität" mit $k \cdot 2\pi i$ ($k = 0, \pm 1, \pm 2, ...$):

(e(3-4i))	ln (e(3-4i))	<pre>solve(eZ=e(3-4i),Z)</pre>	solve(eZ=e(3-4i+2Kπi)
JTZ.20310JJUII	5-41	Z=3 - 41 0	$Z = \ln(e^{2\pi K 1 + 3 - 4 1})$

L6.8 und **L6.9**: Die Gleichungen definieren die hyperbolischen Funktionen *w* = sinh*z* bzw. *w* = cosh*z* :

expand(trisToExp(cExp e ^{X+Yi} e ^{-X-Yi} 2 2 2 2 collect X : Isian(HYP)EMEM	CEXPAND(sinh (X+iY))) $\frac{e^{X+Yi}}{2} - \frac{e^{-X-Yi}}{2}$	expand(trigToExp(cExp e ^{X+Yi} e ^{-X-Yi} 2 + 2 TENSICAL CEOUAL CAN REPAIL D. 1	CEXPAND(Cosh (X+iY))) $e^{X+Yi} e^{-X-Yi}$ 2 + 2 CLE SU BANS
$\frac{\text{solve}(\mathbb{W}=(eZ-e-Z)/2,Z)}{\mathbb{Z}=\ln\left(\mathbb{W}-\frac{\sqrt{4}\mathbb{W}^{2}+4}{2}\right)} = 0$ $\frac{1}{\sqrt{2}} = \ln\left(\mathbb{W}+\frac{\sqrt{4}\mathbb{W}^{2}+4}{2}\right) = 0$ $\frac{1}{\sqrt{2}} = \ln\left(\mathbb{W}+\frac{\sqrt{4}\mathbb{W}^{2}+4}{2}\right) = 0$	$\frac{\text{solve}(\mathbb{W}=(eZ-e-Z)/2,Z)}{\mathbb{Z}=\ln\left(\mathbb{W}+\frac{\sqrt{4\mathbb{W}^2+4}}{2}\right)}$	$\frac{\text{solve}(\mathbb{W}=(e^{2}+e^{-2})/2, 2)}{\mathbb{Z}=\ln\left(\mathbb{W}-\frac{\sqrt{4}\mathbb{W}^{2}-4}{2}\right)} = 0$ $\frac{1}{\sqrt{2}} = \ln\left(\mathbb{W}+\frac{\sqrt{4}\mathbb{W}^{2}-4}{2}\right) = \sqrt{2}$ $\frac{1}{\sqrt{2}} = \ln\left(\mathbb{W}+\frac{\sqrt{4}\mathbb{W}^{2}-4}{2}\right) = \sqrt{2}$	$\frac{\text{solve}(\mathbb{W}=(\mathbb{C}\mathbb{Z}+\mathbb{C}-\mathbb{Z})/2,\mathbb{Z})}{\mathbb{Z}=\ln\left(\mathbb{W}+\frac{\sqrt{4\mathbb{W}^2-4}}{2}\right)}$

eqn(1) ist im Reellen nicht definiert, eqn(2) = $\operatorname{arsinh} w$. Hier definiert eqn(2) die Umkehrfunktion $z = \operatorname{arcosh} w$.

Rechnung "per Hand" mit der Substitution $e^{z} = A$ (> 0, im Reellen) und Auswertung der quadratischen Gleichung:

₩=(A-1/A)/2	solve(eqn(1),A)	W=(A+1/A)/2	solve(eqn(4),A)
<u> 9-1</u>	<u>au²+a</u>	$\theta + \frac{1}{2}$	<u>au2-a</u>
W= <u>¹¹ A</u> n	A=W-440 +4	W= <u></u>	A=W-440 -4
° 2 •		° 2 –	
	- =₩+ <u>√4₩²+4</u> - = €		$\mathbf{w} = \mathbf{W} + \frac{\sqrt{4}\mathbf{W}^2 - 4}{2} \qquad \mathbf{w} \in \mathbf{R}$
TRNSICALCIEQUAL 6 90 ISRPHI D	TRNSICALCIEQUAL CAN IGREAL D	CLR SW RANS D	TRNSICALCIEQUALEAN IGREAT

Anmerkung: CAS kürzt den Faktor 2 in Zähler und Nenner nicht heraus.

Kapitel 7:

L7.1: Die Umformung Abs $z = (z^2)^{1/2}$ gilt nur im Reellen. Im Komplexen gilt Abs $z = (z \cdot \text{conjg}z)^{1/2}$.

Kapitel 8:

L8.1: a) Der Hauptwert in RUN ·MAT-Menü und dann im CAS-Menü:

c) Abs
$$w_{k} = e^{2\pi(1+4k)}$$
 und Arg $w_{k} = \pi/2$

Betrag und Hauptargument wurden in L8.1 abgelesen.

L8.3: Mit L8.2 erhält man $\operatorname{Re} w_{k} = \operatorname{Abs} w_{k} \cdot \cos w_{k}$ bzw. $\operatorname{Im} w_{k} = \operatorname{Abs} w_{k} \cdot \sin w_{k}$.

L8.4: Die vorhandene Speicherkapazität kann beim symbolischen Rechnen überschritten werden ("Speicherfehler"). Im SYSTEM-Menü kann nicht benötigter Speicherplatz freigegeben werden.

<u>sjaali (200-)</u> Speicherfehler <u>д</u> ≤ Drücken Sie:[ESC] I ТКНS[CALCEQUALESN KRPH] р	2Клі÷Q 2πКі ТКНЯІСАL CEQUAL eqn (SRPHI р. 1)	CEXPand(1/(R+i))+P -i + A R ² +1 R ² +1 TRHSICALCEQUALERN GRPHID	CEXPand(1/(1+Bi)+R <u>1Bi</u> B ² +1 B ² +1 TRMSICALCEQUALEGN ISRPHID
$\frac{2}{2} \frac{1}{2} \frac{1}{2} \left(\frac{1}{1} + \frac{1}{2} \frac{1}{4} \right) \left(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \right) \left(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \right) \left(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \right) \left(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \right) \left(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \right) \left(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \right) \left(\frac{1}{4} + \frac{1}{4} +$	$ \frac{e((\ln (1+i)+Q)P))}{A^{2}+1}^{-1} \left\{ \frac{\left(2\pi K + \frac{\pi}{4}\right)R}{A^{2}+1} \right\} $	$\frac{2}{2(B^2+1)} e^{\left(2\pi K + \frac{\pi}{4}\right)B(B^2+1)} e^{\left(2\pi K + \frac{\pi}{4}\right)} e^{\left(2\pi K + \frac{\pi}{4}\right)B(B^2+1)} e^{\left(2\pi K + \frac{\pi}{4}\right)} e^{\left(2\pi K + \frac{\pi}{4}\right)B(B^2+1)} e^{\left(2\pi K + \frac{\pi}{4}\right)} e^{\left(2\pi K$	$ \frac{e((\ln (1+i)+Q)R))}{(B^{2}+1)^{-1}} \cos \left(\frac{2\pi K + \frac{\pi}{4}}{B^{2}+1} - \frac{1}{2} \right) $

Dem Leser bleibt es überlassen, sich die angedeuteten Formelstrukturen selbst ausführlich darzustellen.

Kapitel 9:

L9.1: cExpand liefert die umfangreichste Zerlegung:

			TRNS ICALCIEQUAI EGN IGRPHI D
cExpand(sin (re(ði)))	CExpand(sin (re(0i)))	cExpand(sin (re(0i)))	expToTris(sin (re(ði)
cosh(r•sin(0))•sin(r•	<pre>sin(r.cos(0))+sinh(r.s</pre>	<pre>sin(0)).cos(r.cos(0))</pre>	sin(r(cos(0)+sin(0)•i
▶	MM M	H H	▶
TKMSICHLGEQUHI E9N IGRPHI DI	TKMSICHLGEQUALEAN GRPHID I	TKMSTCHLGEQUHLE9N GRPHI DIT	TKMSICHLGEQUHI EAN IGRPHI DI I

<u>risToEzp(sin (re(8i)</u> (e^{e®i}ri_e⁻e^{®i}ri)_i

L9.2: Wegen der begrenzten Mantissenlänge beim numerischen Rechnen (RUN·MAT-Menü) erhält man nur im CAS-Menü das richtige Ergebnis:

			LISTIMATICPLXICALCINUMI D
100+100i+2 100+100i	simplify((sin Z) ^z +(co 1	100+100i+2 100.0000+100.0000i (sin Z)²+(cos Z)² 0.0000	-1.57760584£+86i cos Z 1.159007071£+43 +6.805850799£+42i (cos Z)2
TRNS CALCIEQUAL GAN ISRPHI D	TRNSICALCIEQUAI EGN IGRPHI D	LISTIMATICPLX CALCINUM D	8.801013399±+85 +1.57760584±+86i LIST MATICPLX CALCINUMI D

L9.3: Berechnung im CAS-Menü:

sin (π/2+i) cosh(1)	approz Ans 1.5431	cos (π/2+i) —sinh(1)i	aperoz Ans 0.0000-1.1752i
sin $(\pi/2+i\ln 3)$	lindionevery fins	1 $\pi/2$ $\pi/2$	trisToFze(cos (π/2+i])
$\cosh(\ln(3))$	1.6667	5	-4i
		3	3
TRNS CALCEQUALE 9N GRPHI D	TRNSICALCIEQUAL CAN IGRAMI D	TRNSICAL CIEQUAL EGIN IGREMI D	TRNSICALCIEQUAL CAN IGRAM D

L9.4: Symbolische Umformungen im CAS-Menü:

<u>expToTri9(sinh (iZ)/i</u> sin(Z)	<u>trisToEzp(sinh (i2)/i</u> <u>-(e²ⁱ-e⁻²ⁱ)i</u> 2	expToTrig(Ans) sin(Z)
TRNSICAL CIEQUAL CAN IGRPHI D	TRNSICAL CEQUAI EGN ISRPHI D	TRNSICAL CIEQUAL EGIN ISRPHI D
<u>cExpand(cosh (iZ))</u> cos(Z)	<u>trisToExp(cosh (iZ))</u> e ^{Zi} +e ^{-Zi} 2	ezpToTrig(Ans) cos(Z)

L9.5: Umformung und Berechnung im CAS-Menü:

100+100i→Z	tCollect(sin Z×cos Z)	approx Ans	approx Ans
100+100i	sin(200+200i)	-1.57760584E+86+8.8010	+86+8.801013399E+85i
	2		
		▶	4
TRNSICAL CIEQUAL EGIN IGREHI D	TRNSICAL CIEQUAL CAN IGRPHI D	TRNS ICAL CEQUAL EGN IGRPHI D	TRNSICAL CIEQUAL CAN IGRPHI D

L9.6: Zerlegung im **CAS**-Menü. Hierbei ist w der konjugiert komplexe Term zu z:

tan (X+Yi)→Z tan(X+Yi) CO TAbsI X! Sign[HYP]FMEM	(Abs tan (X+Yi))²/tan (tan(X+Yi))² tan(X+Yi) ∞ Ta⊳s X! sian HYP FMEM	(X+Yi))²/tan (X+Yi)+W (tan(X+Yi))² tan(X+Yi) TKHS[CALCEQUA]eqn/GRPHL ⊳]	\bigcirc
(Z+W)/2+R tan(X+Yi)+ (Itan(X+Yi) tan(X+Yi) 2 TENSICALCEQUALEGN ISEPHI ▷	CEXPand(R) sin(X).cos(X) (cos(X)) ² +(sinh(Y)) ² TRHS[CALCEQUALEGN INFREED]	(Z-W)/(2i)+I -(tan(X+Yi)-(<u>Itan(X+Y</u> tan(X+Y 2 TEMESCALCEQUALEGN SEEPH ► 1	CEXPand(I) sinh(Y)•cosh(Y) (cos(X)) ² +(sinh(Y)) ² TRHSICALCEQUAL @91 MRRFHL ▷ 1

Wie bereits an anderer Stelle praktiziert, lassen sich der konjugiert komplexe Term, sowie der Real- und Imaginärteil im **CAS**-Menü unkompliziert symbolisch darstellen.

0.0000

sin Z

(sin

-6

Kapitel 10:

L10.1: Die Überprüfung der dargestellten Formeln bleibt dem Leser überlassen.

L10.2: Es ergeben sich unter Beachtung der Periodizität $k \cdot 2\pi$ ($k = 0, \pm 1, \pm 2, ...$) im Realteil von z unendlich viele Lösungen. Die Periodizität wird hier im **CAS**-Menü sofort berücksichtigt!

	0		5
solve(cos Z=5/3,Z) Z=cos⊣(=)−2πk Π	cExpand(eqn(1)) Z=-2πk+ln(3)·i g	cExpand(eqn(2)) Z=2πk-ln(3)·i DD	solve(sin Z=-5/3,Z) Z=-sin⊣(=)+2πk β
Z=-cos-l(⁵ / ₃)+2πk Β	- 8		Z=sin ⁻¹ (⁵ / ₃)+2πk+π Ω
TKNSICALCIEQUALERIN ISRPHI D	TENSICAL CIEQUAL CAN ISR PHILD	TRNS ICALCIEQUAI E 911 ISRPHI D	TRNSICALCIEQUAL CAN ISRPHI D
cExpand(eqn(3))	cExpand(eqn(4))	solve(cosh (iZ)=5/3,Z	solve(sinh (iZ)/i=-5/
$Z=2\pi k-\frac{2}{2}+\ln(3)\cdot i$	$\mathbf{I} = 2\pi \mathbf{k} + \frac{3\pi}{2} - \ln(3) \cdot \mathbf{i} \mathbf{I} = \mathbf{I}$	Z=cos=(ξ]−2πk ⊡	Z=−sin⁼l[∃]+2πk 🛛
		Z=−cos⁻l(ਤੁ]+2πk ⊡	Z=sin⁻l(ਤੁ)+2πk+π ⊡
	TRUE COLLEGIOUS AND REPORT	AN LAUSE VILLESSUIDUS PURC	AN LARSEN FLAMMENT

In den letzten beiden Bildern wurden die Zusammenhänge der Aufgaben 9.4 a) und c) ausgenutzt.

L10.3: Darstellung der Lösungen im CAS-Menü:

Kapitel 11:

Hier sind keine Lösungshinweise notwendig.

Kapitel 12:

L12.1: Eine exakte komplexe Lösung kann hier im CAS-Menü mit solve(... nicht unmittelbar erhalten werden. Deshalb wird der Formelterm A mittels des konjugiert komplexen Formelterms B in seinen Realteil R (vereinfacht dann C) und seinen Imaginärteil I (vereinfacht dann D) zerlegt. C = 0 wird nach Y aufgelöst (eqn(1) bzw. eqn(2)) und in D = 0 eingesetzt. Jedoch können auch die nichtlinearen reellen Gleichungen nicht mit solve(... im CAS-Menü exakt aufgelöst werden, so dass eine Näherungslösung im EQUA-Menü ermittelt werden muß:

X+Vi →Z	Z^3-372-7÷8	(8h≤ 8)≷/8→8	(8+B)/2⇒R
NTO 5	3 2		CHIEST ETR
0771	(X+Yi) ³ -3(X+Yi) ² -7	$\left[\left(\left[\left(y_{\pm} y_{\pm} y_{\pm} \right)^3 - \left[\left(\left[\left(y_{\pm} y_{\pm} y_{\pm} \right)^3 - \left[\left(\left[\left(\left[\left(\left[\left(y_{\pm} y_{\pm} y_{\pm} \right)^3 - \left[\left(\left[\left[\left(\left[\left[\left(\left(\left[\left(\left(\left(\left[\left(\left(\left[\left(\left(\left[\left($	16178493347849332471
		(X+Yi) ³ -3(X+Yi) ² -7♥	(X+Yi)°-3(X+Yi)4-™
			2
TRNSICALCIEQUALERIN IGRPHI D	TRNSICALCIEQUAI EAN IGRPHILD	CO Abs X ! Sign HYP FMEM	CO Abs X ! Sign HYP FMEM
simplify(cExpand(R))→	cExpand(R))→C	(A-B)/(2i)→I	simplify(cExpand(I))→
u3 702.7 70.702 7	u3 702.7 70.702 7		7 020 700 03
x3x-+(-3x+37yr	838-+(-38+3781	$ - ((X+Yi)^3 - 3(X+Yi)^2)$	элтүтөлүтүг
		((X+Y1)*=3(X+Y1)*	
cEzpand(I))→D	solve((C=0,D=0),(X,Y)	solve(C=0,Y)	eliminate(D=0,Y,eqn(1
xv20_2v0_03	$c_{01}u_{0}(\sqrt{3}_{7})^{2}u_{1}(-7)u_{7}$	<u>u3.702.7</u>	
$0n^{-1} - 0n^{-1}$	B0100((A3A-+(-3A+3	$V = \frac{-\sqrt{-x^2 + 3x^2 + 1}}{2}$	-3J-X ³ +3X ² +7X ² .6J-X ³ .
	•	. 1–3X+3 a	
	-		1-0ATO 14
		$=\frac{1-X^{0}+3X^{2}+7}{2}$	
CLR SW RANS D	TRNSICAL CEQUAL CAN IGRAHI D	TRNSICAL CEQUAL CAN GREAT	TRNS ICALCIEQUAL GAN IGRPHI D
leliminete/D=0 V een/2	Claisburg		
ellminace(D-0, Y, eqn(2	GIEICHGHG	3 A A A A	80-100-100-0 8
- <u></u>			3-5500
<u>31-X0+3X++1X+ 61-X0+</u> m	Tye wählen		2 -0.211+1.3151;
↓ <u>-3X+3</u> ↓ ₽ [™]	F1:Gleichzeitis		al-o.ann-i.anshij
	F2:Polynominal		
	F3:Lösung	-7.000	3.554149219
CLR SW RANS D	SIMUPOLMSOLU	EDITIDELAICLE SOLU	REPT

aX3+bX2+cX+d=0	aX3+bX2+cX+d=0	aX3+6X2+cX+d=0	aX3+bX2+cX+d=0
aX3+bX2+cX+d=0 	3.554149219÷E 3554149219 1000000000	746093+1.3757756621+F 68788783 68788783 68788783 68788783 CLRI SW IRANS	746093-1.3757756621+G 2770746093 68788783 10000000000 50000000 * CLR SW IRANS

Die Lösungen (eine reelle und ein Paar komplexer / konjugiert komplexer Zahlen), dargestellt in arithmetischer und exponentieller Darstellung (Winkelmodus Altgrad), wurden dann im **CAS**-Menü in **E**, **F** und **G** abgespeichert. **W** ist die Polynomvariable, **H** das quadratische reelle Polynom. Schließlich wird unter **J** das Gesamtpolynom (**W-E**)(**W-F**)(**W-G**) symbolisch berechnet und abgespeichert, vereinfacht und mit der Ausgangsaufgabe verglichen, um festzustellen, wie gut die Näherungslösung einer Faktorisierung der Ausgangssituation entspicht:

simplify((W−F)(W−G))→	(W-F)(W-G))→H	simplify((W−E)H)→J	expand(J)
2.2770746093W.196952	196952901127028589049	(1, 3554149219)(12, 277)	7 7500000001W ² 1
" 500000000 100000	1000000000000000000000	l\ <u>"1000000000</u> l\" <u><u>50</u></u>	M3-1000000010 - 10000
•	4 •	•	2000000000 10000
-	· ·	-	-
TRUCTOR STOLING AND STOLING		TRUCTOR CONTRACTOR	
TKASICALCIEQUALEAN ISKPHLID II	CLRTSWIKAMSI DI	TKASICALCIEQUALEAN ISKPAL DI L	TKNSTCHLGEQUHLENN GKPHL D. T
expand(J)	expand(J)	expand(J)	Dev Keeffinievet dee
			Der Koemizient des
<u>1226364382910</u> 6	<u> 599999999997204128795591</u>	720412879559175302731	guadratischon Torms
900000000000000000000	190000000000000000000	7900000000000000000000	quadralischen tenns
P P	P P	P	75 000 000 01/25 ist
			praktisch exakt.
TRNSICALCIEQUALEGN IGRPHI D	TRNSICALCIEQUALEGN IGRPHI D	TRNSICALCIEQUALEGN IGRPHI D	•

Der zusätzliche lineare Term hat den Koeffizienten $1,226 \cdot 10^{-9}$ und ist damit vernachlässigbar. Das Absolutglied ist praktisch auch korrekt 6,999.999.9972 mit einer Toleranz von $3 \cdot 10^{-9}$. Interessant ist die Darstellung des Absolutgliedes als Bruch mit Zahlen aus jeweils **30** Ziffern.

L12.2: Im nächsten Beispiel ergibt der **factor(...** - Befehl keine reelle Faktorisierung, so dass zwei komplexe Faktoren zunächst herausgekürzt werden, um zwei Faktoren mit einem Paar komplexer / konjugiert komplexer Nullstellen zu einem reellen quadratischen Faktor ausmultiplizieren zu können:

rFactor(Z^4+16=0) (Z+(-1-i)√2)(Z+(-1+i O	<u>setRisht(exchanse(ean</u> (Z+(-1-i)√2)(Z+(-1+i)√	exchange(eqn(1)))≯W √2)(Z+(−1+i)√2)(Z+(1−i	exchanse(eqn(1)))≯W Z+(1−i)√2)(Z+(1+i)√2)
•	▶	• •	•
TRNSICALCEQUALERN ISRPHI D	TENSICAL CEQUAL CAN GREAT D	CLR SW IR ANS D	CLR SW RANS D
₩/((Z+(1-i)√2)(Z+(1+i) (Z+(-1-i)√2)(Z+(-1+i)√	-i)42)(Z+(1+i)42))+8 (-1-i)42)(Z+(-1+i)42)	ezpand(8) Z ² -2\$Z+4	₩/8+T (Z+(1−i)√2)(Z+(1+i)√2)
•	•		
CLR SW IRANS D	CLR SW RANS D	TRNSICAL CIEQUAL CAN IGRPHI D	CLR SW IRANS D
expand(T) Z ² +2.\2Z+4	expand(SXT) Z ⁴ +16	Zum Schluß wurden die Faktoren S und T noch e um das Ausgangspolynd	reellen quadratischen einmal ausmultiplizert, om 4. Grades zu erhal-

TENSICAL CIEQUALERIN ISERHI DI TENSICAL CIEQUALERIN ISERHI DI ten (Rechenkontrolle).

L12.3: Das Polynom 7. Grades läßt sich im CAS-Menü unkompliziert faktorisieren:

L12.4: Die Rechnung erfolgt hier in kleineren Teilschritten, da es sonst zu Speicherfehlern (Speicherüberlauf) kommt. Die Nullstellen sind in exponentieller Darstellung (Winkelmodus Altgrad) vorgegeben.

Wichtiger Hinweis: Jegliche Winkeleingaben in der exponentiellen Darstellung werden stets als Bogenmaß interpretiert, unabhängig von der **SET UP** Einstellung! Nur unmittelbar in trigonometrische Funktionen kann eine Winkeleingabe in Altgrad erfolgen! Andererseits kann im **RUN·MAT**-Menü eine Ergebnisanzeige (exponentielle Darstellung) sehr wohl in Altgrad erfolgen, aber eben die Eingabe selbst nicht!

Angle :Deg Answer Type :Complex Display :Norm1 Deg[Rad]	(Z-2e(36i))(Z-2e(-36i (Z-3e ⁻⁴⁵ⁱ)(Z-3e ⁴⁵ⁱ)(Z- ▶ €	(Z-3e(45i))(Z-3e(-45i)(Z-2e ⁻³⁶ i)(Z-2e ³⁶ i)(CLR] SW IRANS	$\frac{5e(60i))(25e(-60i)}{i)\left(z-\frac{e^{-60i}}{2}\right)\left(z-\frac{e^{60i}}{2}\right)$
$\frac{60i}{2} = \frac{e^{-60i}}{2} \left[2 - \frac{e^{-60i}}{2} \right]$	expand(P) Z ⁶ + <u>532⁴</u> + <u>1572²</u> - 3e ¹⁴¹ i ₂ ↓ TENSICAL CIEQUAL GAN ISSEMI ▷	$\frac{collect(P,Z)}{z^{6} + \left(\frac{-e^{60i}}{2} - 3e^{45i} - 2e^{36i}\right)}$	

Es werden Faktorpaare aus komplexen / konjugiert komplexen Nullstellen gebildet. Das Polynom 6. Grades wird in **P** abgespeichert und mit **collect(P,Z)** vereinfacht. Die Winkel erscheinen formal in Altgrad, obwohl sie der Rechner als Bogenmaß interpretiert, wie die folgenden Bilder zeigen:

<u>e(36i))(Z-2e(-36i))+A</u> (Z-2e ⁻³⁶ⁱ)(Z-2e ³⁶ⁱ)	simplify(ezpToTrig(A) Z ² -4·cos(⁶⁴⁸⁰ / _π)·Z+4	(45i))(Z-3e(-45i))→B (Z-3e ⁻⁴⁵ⁱ)(Z-3e ⁴⁵ⁱ)	$\frac{\sinh\left(\frac{1}{2}\right)}{2^{2}-6\cdot\cos\left(\frac{8100}{\pi}\right)\cdot 2+9}$
	TENSICALCEQUAL CAN GREAT D	TRNSICALCEQUALEGN (SRPHID)	TRNSICALCEQUALEGN ISRPHILD
$\left[z - \frac{e^{-60i}}{2}\right] \left[z - \frac{e^{60i}}{2}\right]$	$\frac{10800}{2^{2}-\cos\left(\frac{10800}{\pi}\right)\cdot 2+\frac{1}{4}}$	Angle Red Angwer Type :Complex Display :Normi	<u>simplity(cEzpand(H)+D</u> Z ² −4•cos(36)•Z+4
TENSICALCISQUAI EAN ISRPHI D	TRNSICALCEQUALEGN IGRPHI D	DeglRad	TRNSICALCIEQUALEGN ISRPHILD

Die Umschaltung auf Bogenmaß (Rad im **SET UP**) bringt die korrekten quadratischen Faktoren hervor, die in **D**, **E**, **F** und **G** = $\mathbf{D} \cdot \mathbf{E}$ abgespeichert werden und dabei **cos**-Terme mit den korrekten Winkeangaben (in Altgrad) enthalten. Der Rechner hat die Winkelangaben der **e**-Funktion nicht umgerechnet, da Bogenmaß eingestellt war (etwas verwirrend, aber nachvollziehbar).

simplify(cExpand(B)+E Z ² -6•cos(45)•Z+9	simplify(cExpand(C)+F Z ² -cos(60)•Z+ <u>1</u>	<u>collect(D×E,Z)+G</u> Z ⁴ +36·(cos(36)) ² ·(cos	Angle :Deg Answer Type :Complex Display :Norm1
		•	
TRNSICALCIEQUAL EGIN ISRPHI D	TRNSICALCIEQUAL EGIN ISRPHI D	CLR SW RANS D	Deg Rad

Wird nun, nachdem die Winkelangaben korrekt in den **cos**-Termen stehen, $z^{4+(3\sqrt{10}+3\sqrt{2}+13)}z^{2+1}$ auf Altgrad umgeschaltet, interpretiert der Rechner im nächsten Umformungsschritt die Winkel korrekt als Altgradangaben.

Die letzten sechs Bilder enthalten das gesuchte Polynom 6. Grades:

Die leizien seens blider entralten das gesuchten	CLR SW RANS D	
$\frac{\text{simplify(collect(F,Z)} \text{ collect(F,Z)}}{2^2 - \frac{7}{2} + \frac{1}{4}}$ $z^2 - \frac{7}{2} + \frac{1}{4}$ $z^2 - \frac{7}{2} + \frac{1}{4}$	simPlify(collect(G×H, Z ⁶ +(<u>3√10</u> +9√5+27√2+175 4+2+4+4 ▶	$\frac{\operatorname{simplify}(\operatorname{collect}(G\times H, \frac{3\sqrt{10}}{4}, \frac{9\sqrt{5}}{2}, \frac{27\sqrt{2}}{4}, \frac{175}{4})Z^2$
TENSICAL CIEQUALERIN ISRPHI DI TENSICAL CIEQUALERIN ISRPHI DI	TRNSICALCISQUAI EGN IGRPHI D	TRNSICAL CIEQUAI EGIN IGREHI D
$\frac{3\sqrt{10}}{2} - \frac{37\sqrt{5}}{4} - \frac{57\sqrt{2}}{4} - \frac{63}{4} Z^{3} + \left(\frac{-9\sqrt{5}}{4} - 3\sqrt{2} - \frac{81}{4}\right) Z + \left(3\sqrt{10} + \frac{9\sqrt{5}}{4} - 3\sqrt{2} - \frac{81}{4}\right) Z + \left(3\sqrt{10} + \frac{9\sqrt{5}}{4} - 3\sqrt{2} - \frac{81}{4}\right) Z + \left(3\sqrt{10} + \frac{9\sqrt{5}}{4} - 3\sqrt{2} - \frac{81}{4}\right) Z + \left(3\sqrt{10} + \frac{9\sqrt{5}}{4} - \frac{9\sqrt{5}}{$	simPlify(collect(G×H, +(3√10+√5+9√2+55) 4 TRHS[CALCEQUALERN BAPHI ►	simPlify(collect(G×H,)]Z ⁴ +(-√5-3√2-3/2)Z ⁵ +9 ◀ TRHS[CALCEQUALEGN ISEPHID]

Kapitel 13:

L13.1: Im Periodizitätsintervall -1 < x < 1 ($x \neq 0$) kann f (x) durch f(x) = sgn(x) = stellt werden. Die Periodenänge T beträgt T=2, d.h. $\omega = 2\pi/T = \pi$.

92 Paditz: Komplexe Zahlen

Lösungshinweise - Kapitel 13

L13.2: Diese Aufgabe ist zunächst eine gute Übung, die Wirkungsweise der Int-, Intg- und Frac-Funktion kennenzulernen. Die Funktion y = f(x) = Intx + Fracx - Intgx - 1/2 = x - Intgx - 1/2 ist rechtsseitig stetig, d.h. in der Unstetigkeitsstelle wird immer der von rechts herkommende untere Funktionswert -1/2 angenommen:

Lösungshinweise - Kapitel 13 und 16

Kapitel 14:

Hier sind keine Lösungshinweise notwendig.

Kapitel 15:

L15.1: a) Die Betragsungleichung wird zuerst im **CAS**-Menü umgeformt und dann im **GRPH** •**TBL**-Menü über eine Ungleichungsgraphik (Fläche zwischen oberem und unterem Halbkreis) dargestellt:

X+Yi →Z X+Vi TENSICALCIEQUAI eqn ISEPHI D	Angle :Rad Hnswer Type :Complex Display :Norm1 Real(MX)	Rbs (2-2)≚3 IX+Yi-21≦3 □ TRHSICALCIEQUAL GAN ISRPHI D	simplify(cExpand(eqn(√(X-2) ² +V ² ≟3 @ TENSICALCEQUALEQN ISEPHID
solve(eqn(2),Y) √(X-2) ² +Y ² -3≚0 B TENSICALCEQUALEGN (SEPHIN)	Grafikfunkt.:Y∠ Y18-J(32-(X-2)2) Y26N(32-(X-2)2) Y3: Y4: Y5: Y5: Y6: SELIDELITYPE/GMEMIDRAWI ▷]	Betrachtungsfenster Max 5.5 scale 1 dot 0.05555555 Ymin -3.5 max 3.5 INITIRIESTO STO RCL	Angle :Rad ↑ Complex Mode:a+bi Coord :On Grid :Off Hxes :On Label :On Display :Norm1
	B:QUICK ↓ A:Pre 9:Ints 8:Rnd 7:Square ↓6:Oris	Y	Betrachtungsfenster Max 9 scale:1 dot 0.11111111 Ymin -3.5 max 3.5 INITIRISISTOISTOIRCE

Zuletzt wurde mit ZOOM Square der Kreis (Innengebiet mit Rand) unverzerrt dargestellt.

Done

I d C d . h) C a h an alabt at al			
LIS.I: D) ES handelt sich	X+Y1→Z		
mit R > 2 . Für die graphi	ische Darstellung wird die	e Parameterdarstellung	X+V1
von Kroison mit mit Padi	on größer ele 2 genutzt v	vohoj dio Podion ühor	
von Kreisen mit mit Rauf	en grober als z genuizi, v	wobel die Radien über	
die List1 (im RUN·MAT-	Menü abgespeichert) sof	ort in die Formel für die	
Kreislinien eingehen:	- · · · ·		CLR SW RANS D
(Abs (7+1))2)22	simelify(cEreand(ean(cExeand(egn(1)))	[Seg(r,r,2.1,5.6,.25)→]
			List 1
(1X+Y1+11)+>4 0	(X+1)~+Y~>4 🛛 🗧	(X+1)++Y+>4	Done
TRNSICAL CIEQUAL CAN IGRPHI D	TRNSICALCIEQUALERIN IGRPHI D	TRNSICAL CIEQUAL EGIN IGRPHI D	LISTIMATICPLXCALCINUM D
Grafikfunkt.:Param	Betrachtungsfenster	Betrachtungsfenster	7/////////////////////////////////////
¥1≥-√(3²-(X-2)²)	Xmin : 6	Ymin <u>:</u> 2 <u>.</u> 5	191111111111111 - "BNNNNN
₩241(34-(X-2)4) ₩•78-1+13-• 194-4- T	max 4	max 2.5	IS <i>TRUTURE</i> E NOOMAN
WINE TELEVINE	dot :0 07936507	SCALE•1 Témip :0	1416661141174 • • • • • • • • • • • • • • • • • • •
Xt4:	Ymin -2.5	max :6.2831853	TANANNA T <i>ANANA</i>
Ÿť4:	max 2.5	Ptch:2π/50	
SEL DEL TYPE GMEMIDRAW D	INITIRIGISTO STO RCL		

L15.1: c) Hier handelt es sich um einen Kreisring um M(-1,-1) mit $1 < R \le 4$. Es wird im wesentlichen wie in Aufgabe L15.1b) vorgegangen:

L15.2: Hier handelt es sich um einen senkrechten Parallelstreifen, der graphisch über x = c = List1 dargestellt wird. Die c-Werte werden dabei als List1 im RUN·MAT-Menü abgespeichert:

			LISTIMATICPLACALCINUMI D
Grafikfunkt.:X=c Y1≥-√(3²-(X-2)²) Y2≤√(3²-(X-2)²) Xt3=-1+List 1×cos T Yt3=-1+List 1×sin T X5: SELIDELITYFEIGMEMIDRAWI D	Betrachtungsfenster Maz :5 scale:1 dot :0.07936507 Ymin :-5 maz :5 INITIRIGISTOISTOIRCE	Y 	Y

L15.3: Die Ungleichung wird offensichtlich von "großen" *z*-Werten erfüllt, die hinreichend weit entfernt von z = 0 und z = 1 liegen. Damit handet es sich um das Außengebiet zur Cassinischen Kurve, die eine Gleichung 4. Grades in *x* und *y* ist, wenn man zur reellen Dar-

stellung übergeht. Mit dem **solve(...** - Befehl (**CAS**-Menü) kann diese Gleichung nach *y* aufgelöst werden. Die vier Lösungen werden als Funktionsterme **Y1** bis **Y4** abgeseichert, wobei nur **Y2** und **Y4** reelle Funktionen sind. Genau mit diesen Funktionen werden der obere und der untere Teil der geschlossenen Cassinischen Kurve gezeichnet.

© CASIO Europe GmbH Norderstedt

X+Yi→Z

(+Vi

CLR SW RANS

Lösungshinweise - Kapitel 15 und 16

Abschließend wird über das **GRPH**·**TBL**-Menü eine Ungleichungsgraphik für das betrachtete Außengebiet dargestellt, wobei die untere Schraffur als Hintergrundbild abgespeichert wird, da nicht beide Schraffuren gleichzeitig gezeichnet werden können. Der linke und rechte Scheitelpunkt werden exakt ausgerechnet:

Wie ändern sich die Umformungen und Graphiken für die Cassinische Kurve $|z - i| \cdot |z| = 1$?

Kapitel 16:

L16.1: Zuerst wird die Ausgangssituation in der *z*-Ebene dargestellt:

Die imaginäre Achse ($P_3(0,2) \rightarrow P_4(0,0)$) geht bei $w = z^2$ in die negative Achse über, die positive reelle Achse ($P_4(0,0) \rightarrow P_1(0,2)$) geht bei $w = z^2$ in die positive Achse über: $-4 \le w \le 4$.

Die Parameterdarstellung für $P_1(2,0) \rightarrow P_2(2,2)$ lautet z(t) = 2 + it, im Bildbereich $w = -t^2 + 4 + 4it$:

2+iT→Z	cExpand(Z≧)≁W	-T2+4→Xt1	4T÷¥t1
Ti+2	4Ti-T ² +4	-T ² +4	4T
TRNSICAL CIEQUAL EGIN IGREHI D	TRNS CALCIEQUALE 9N ISRPHI D	Yn I Fn IXtn Ytn Xn	Yn I Yn IXtri Ytri Xn

Die Parameterdarstellung für $P_2(2,2) \rightarrow P_3(0,2)$ lautet z(t) = t + 2i, im Bildbereich $w = t^2 - 4 + 4it$:

<u>⊺+2i→Z</u> T+2i	cEzpand(Z²)+W T ² −4+4Ti	T≥-4→Xt2 T ² -4	4T÷¥t2 4T
Yn I Yn IXtol Ytol Xn	TRNS ICALCIEQUAL CAN IGRPHI D	Yn Fri Xtri Ytri Xn	Yn Fri Xtri Ytri Xn
Grafikfunkt::Y= WGU=DM224 Vt184×T Xt28T^2-4 Vt284×T Vt	Betrachtungsfenster Max :4.5 scale:1 dot :0.07142857 Ymin :-0.5 max :8.5 INITIRISISTRISTORCE	Betrachtungsfenster Ymin :-0.5 max :8.5 scale:1 Têmin :0 max :2 Ptch:0.02 INITIRISISTOISTOIRCE	Variable :Range Draw Type :Connect Graph Func :Off Dual Screen :Off Simul Graph :Off Derivative :Off Background :None J NontPict

Damit ist das Bild des Quadrates ein dreieckförmiges Gebilde, das aus zwei nach links bzw. nach rechts geöffneten Parabelästen gebildet wird! Das Innengebiet des Quadrates geht wieder in das Innengebiet über.

Kapitel 17:

L17.1: Lösung im EQUA-Menü, RUN·MAT-Menü oder CAS-Menü möglich:

anX+bnY+CnZ=dn <u>anX+bnY+CnZ=dn</u> [anX+bnY+CnZ=dn ×[anX+bnY+CnZ=dn X Y I+i
-1 -1 EDITIDELAI CLRI ISOLUI REPTI	EQUA-Menü 1+i	Ø
R z J I z J z z z a z z J A z z J A	in\$ [iX+2Y+4Z=3+2i Xi+2Y+4Z=3+2i O
4 EDITIR-OPIR-DELIR-INSR-ADDI D MATI	RUN·MAT-Menü -i	
0X+1Y+2iZ=1+i Y+2Zi=1+i 8 -Xi+4Z=-1 8	solve((eqn(1),eqn(2), X=-i V=1+i Z=0 CAS-Menü	2),eqn(3)),(X,Y,Z)) X=-i V=1+i Z=0
	TRNSICAL CIEQUAL EGN IGRPHI D	TRNSICAL CIEQUAL CAN IGRPHI D

L17.2: Lösung im CAS-Menü mit dem solve(... - Befehl möglich. Im Nenner der Lösungsdarstellung tritt dabei der Term STi+4S+4 auf, so dass z.B. die Fallunterscheidung a) STi+4S+4 \neq 0, d.h. T=4i oder S \neq -4/(4+Ti) bzw b) STi+4S+4=0 d.h. T \neq 4i und S=-4/(4+Ti) zu treffen und auszuwerten ist:

1X+ZY+1XZ=3+Z1 [[0X+1Y+Z1Z=1+1 [[SXX+0Y+4Z=-1 [[SUIVE(X E9n(175E	an(8),
Xi+2Y+TZ=3+2i	D
$Y = \frac{-((1+i)ST + (4-i))}{-4S + (-ST)}$	<u>5i)</u> 9 +4i)⊞
▼_(-2+2i)8+((-3	<u>-217</u>
<u>ITENSICAL GEQUALEAN GEPHI DII ITENSICAL GEQUALEAN GEPHI DII ITENSICAL GEQUALEAN DII ITENSICAL GEQUALEAN DI ITENSICAL GEQUALEAN DI</u>	FHI D I
8),ean(9)),(%,Y,Z)) [8),ean(9)),(%,Y,Z)) [8),ean(9)),(%,Y,Z)) [simplify(ean(10	55
+4i)i	
T+4i)i $m' -48+(-ST+4i)m' + S+(-ST+4i)i$ $m' -STi-48-4$	UEI
$\begin{array}{c c} \P_{2}^{T+(4-6i)8+6-4i)i} \\ \P_{3}^{+(-ST+4i)i} \end{array} \qquad \blacksquare \qquad = \frac{(-2+2i)8+((-3-2i))2}{-48+(-3T+4i)i} \blacksquare \qquad = \frac{(-2+2i)8+((-3-2i))2}{24} \\ \P_{3}^{+(-ST+4i)i} \qquad \blacksquare \qquad = \frac{(-2+2i)8+((-3-2i))2}{-48+(-3T+4i)i} \blacksquare \qquad = \frac{(-2+2i)8+((-3-2i))2}{24} \\ = \frac{(-2+2i)8}{24} \\ = \frac$	usw.
▼+((-3-2i)S-i)i ▼ CLEISU RANG D LEESU RANG D TENSICAL (ROUAL AND RANG D)	

Stichwortverzeichnis

Α

Ableitung, symbolisch, partiell (CAS) 60,73
abs (Untermenü CPLX) 7
Absolutwert einer komplexen Zahl 7
Addition komplexer Zahlen 7
Additionsregel (komplexe Zahlen) 8
Additionstheoreme (trigonom. Funktionen) 9,19
Äquipotenziallinien
allgemeine reelle Potenz 24
allgemeine komplexe Potenz 37
Altgrad (Deg, Winkelmodus) 7
ALGEBRA-Menü 71
Ans (Ans-Speicher) 33,41
Answer Type 28
approx (Befehl) 10,41
Areafunktionen 52,86
arctan 10,19,25
Arg (Untermenü CPLX) 7
Argument einer komplexen Zahl 7
arithmetische Darstellung (komplexen Zahl) 7,28
Arkusfunktionen
Auszoomen 63

В

Basen (Logarithmus)	33
Befehle, geschachtelt	14,31
Betrag einer komplexen Zahl	7,60
Betragsfunktion (Abs)	35
Betragsungleichung	63
Betrachtungsfenster (V-Window) 27,	35,57,65
Bildbereich	32
Binomischer Satz	18
Blatt, Blattnummer 16,	29,37,39
Bogenmaß (Rad, Winkelmodus)	7,23

С

CAS-Menü	9
Cassinische Kurve 64,9	95,96
Cauchy-Riemannsche Differenzialgleichungen	60
cExpand (Befehl, cExpnd)	9,38
collect (Befehl, collct)	9,56
Comp (Zahlensystem - Mode - SET UP)	7
Complex Mode (Zahlenformat) 11,2	23,24
CONIC-Menü	. 66
Conjg (konjugiert komplexe Zahl)	8
cos-Funktion	41
cos-Reihe	10
cosh-Funktion 43,51,5	52,86

CPLX (Untermenü)	7
Cramersche Regel	71

D

Darstellungsformen komplexer Zahlen	7
Definition komplexer Zahlen	7
Definitionsbereich (Syntax)	65
Deg (Altgrad, Winkelmodus)	7
Determinante (Matrix)	70
diff (komplexe Ableitung) 60,61	,73
DIN-gerecht, Hauptargument 17,23,25,	,37
DIN-gerecht, Hauptwert	30
Division komplexer Zahlen	13

Ε

21
10
31
72
13
57
68
62
62
71
35
39
68
29
72
28
10

F

factor (Befehl)	14,15	,53
Faktorisierung (CAS)	15,53	,56
Feldlinien		68
FMEM (Termspeicher)		36
Fourierkoeffizienten (komplex)		57
Fourierreihen (komplex)		57
Frac-Funktion (Nachkommastellen)		59
Fundamentalsatz der Algebra		53
Funktionentheorie		60

G

Gaußsche Zahlenebene	7,11,33
Gegenuhrzeigersinn	16,27
Geradenstück	66

getRight (Befehl)	67
Gleichheitseigenschaft (komplexe Zahlen)	8,10
Gleichungssystem, linear	15,70
Graphik-Hintergrundbild	69
GRPH (Untermenü)	12,67
GRPH.TBL-Menü 17,22	35,43

Н

Halbebene	27,64
Halbkreis	62,66
Hauptargument 17,23	8,25,26
Hauptargumentbereich	. 7,11
Hauptwert (Logarithmus)	30
Hauptwert (Potenz)	37
Hauptwert (cosh-Funktion)	51
Hauptwurzel von -1	8
Hauptwurzel einer komplexen Zahl	24
Hintergrundbild 69	,78,81
Hyperbolische Funktionen (HYP)	43,51

I

imaginäre Achse	7
imaginäre Einheit 8	3
Imaginärteil komplexer Zahlen (ImP) 8,27,60)
Index, Indizes 16,22,37	7
Innengebiet 69	9
Int-Funktion (Vorkommastellen) 59	9
Intg-Funktion (Ganzzahlfunktion) 59	9
Integral mit Parametern 57	7
Inverse Zahl bei Addition 13	3
Inverse Zahl bei Multiplikation 14	1
∫ (Integral)	1

Κ

Kartesische Koordinaten, Transformation	9
Kegelschnittgleichung	66
kleine Geschichte (etwa drei gleiche Antworten)	46
komplexe Basis einer Potenz	37
komplex differenzierbar	60
komplexes lineares Gleichungssystem 15,	,70
komplexer Logarithmus	30
komplexe Polynome	53
konjugiert komplexe Zahl (Conjg) 8,	,60
Koordinaten des Funktionsgraphen 65,67,	68
Koordinatenpaar	7
Koordinatenumwandlung, Transformation	9
Körper der komplexen Zahlen	7
Kreis	,66
Kreisumgebung	62

L

Lage der komplexen Zahlen	12
Lineares Gleichungssystem (im CAS-Menü)	14
Linearfaktoren eines Polynoms	53
ListAns-Speicher 11,26,32	,38
ListAns-Liste eingeben	22
Logarithmengesetze	34
Logarithmus, komplexer 30	,72

Μ

MatAns-Speicher	70
mathematisch positiver Drehsinn 16,27,	55
Matrix, invertieren	70
Matrix-Editor	70
Mehrdeutigkeit (Logarithmus)	34
Menge der komplexen Zahlen	7
Mittelpunkt (Kreis) 62,	66
Multiplikation komplexer Zahlen	7
Multiplikationsregel (komplexe Zahlen)	8

Ν

Nebenwert (Logarithmus)	30
Nebenwert (Potenz)	37
Nebenwert (cosh-Funktion)	51
Nebenwurzel einer komplexen Zahl	24
Normalform	42
Null (als komplexe Zahl)	13
Nullstellen komplexer Polynome	53
Nullstellengleichung 54	,55
Numerische Berechnungen (NUM)	44

0

Optionsmenü (Funktionstaste OPTN) 7,44

Ρ

Parallelstreifen	22,30,32,49,64
Parameter (Gleichungssystem)	
Parameterdarstellung (komplex)	65
parameterfreie Darstellung	65,67
Parameterintegrale	57
partielle Ableitungen (CAS)	60
Partialbruchzerlegung	
periodische komplexe e-Funktion	21,33
Periodizität (komplexe sin-Funktion) 44
Plattenkondensator	
Polarkoordinaten, Transformation	

Stichwortverzeichnis

Polarkoordinatendarstellung	. 68
Polynomgleichungen (POLY)	. 53
Potenz einer komplexen Zahl	16,73
Potenzgesetze	. 20
Potenzial (komplexes)	. 68
Punktmengen (komplexe)	. 62
Pythagoras, trigonometrischer, hyperbolischer	45

Q

Quadranten im Koordinatensystem	10
Quadrat	69
Quadratisches Polynom	53

R

Radius einer komplexen Zahl	23
Radius (Kreis)	27,62,66
Rand	69
Real-Modus	24
Realteil komplexer Zahlen (ReP)	8,27,60
Rechengenauigkeit	47
Rechteckkurve	59
reelle Achse	7
regulär (Funktion, Matrix)	60,70
rewrite (Befehl)	68
rFactor (Root-Faktor-Befehl)	53
Riemannsche Fläche	16,21,37

S

т

Sägezahnkurve 59
Satz von Moivre 18
Scatterplot (Gaußsche Zahlenebene) 11,20,27
Scatterplot der Zahlenpaare 11,33
Select (Untermenü) 12
SET UP (individuelle Voreinstellungen) 10
Signum-Funktion (sgn) 19, 35,36
simplify (Befehl, smplfy) 9
sin-Reihe 10
sinh-Funktion 43,51,52,86
Sinus-Funktion 41,73
Spaltenvektor 70
Speicherfehler 39,40
STAT-Listeneditor 12
STAT-Menü 11,22,32
statistische Grafik 11,20
Subtraktion komplexer Zahlen 13
solve 14

Taylorentwicklung	10
Taylorpolynom (CAS)	61
Termspeicher (FMEM)	36,41
Tracefunktion (TRACE)	12,35
TRIG (Untermenü)	10
trigonometrische Darstellung (komplexe Zahl)) 10
Trigonometrische Funktionen (komplex)	43
trigToExp (Befehl)	10,45
TRNS (Untermenü)	9
TUTOR-Menü	71

U

Umgebungsradius	62
Umkehrfunktion, trigonometrische	10
Unbeschränktheit	44
unendlich große komplexe Zahl	7
Ungleichung	62
Urbildbereich	32

V

V-Window (Betrachtungsfenster)	27
Vektorrechnung	36
Vorzeichenfunktion 19	,35
verbundene Datenlisten	11

W

Wertebereich, arctan-Funktion	. 10
Winkel einer komplexen Zahl	7
Winkelabstand	. 27
Winkelmodus	7
Winkelproblem	. 42
Winkelraum 16,	29,64
Wurzel einer komplexen Zahl	. 24
Wurzelfunktion	. 35
Wurzelwerte	27,56
Wurzelziehen	. 73

Χ

$\Lambda = ROHSLAHLEHHEHHI \dots 04,8$	X = Konstantenterm		64,	95
--	--------------------	--	-----	----

Ζ

Zahlenfolgen	22
Zahlenformat (Complex Mode)	11
Zahlenkörper	8
Zahlenliste (komplexe Zahlen)	11
Zahlensystem (Mode)	7
Zehner-Logarithmus	33
Zoom-Square-Befehl	63