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Abstract

Systems of grid equations that approximate elliptic boundary value
problems on locally modified grids are considered. The triangulation,
which approximates the boundary with second order of accuracy, is
generated from an initial uniform triangulation by shifting nodes near
the boundary according to special rules. This ”locally modified” grid
possesses several significant features: this triangulation has a regular
structure, the generation of the triangulation is rather fast, this con-
struction allows to use multilevel preconditioning (BPX-like) methods.
The proposed iterative methods for solving elliptic boundary value prob-
lems approximately are based on two approaches: The fictitious space
method, i.e. the reduction of the original problem to a problem in an
auxiliary (fictitious) space, and the multilevel decomposition method,
i.e. the construction of preconditioners by decomposing functions on
hierarchical grids. The convergence rate of the corresponding iterative
process with the preconditioner obtained is independent of the mesh
size. The construction of the grid and the preconditioning operator for
the three dimensional problem can be done in the same way.
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1 Introduction

The most efficient solvers for large-scale systems of finite element equations are algorithms
which make use of a sequence of discretizations of the boundary value problem consid-
ered or at least of a sequence of triangulations of the underlying domain. Examples for
such solvers are the multi-grid method (see, e.g., [6, 10, 12, 13]) and BPX-like methods
(see, e.g., [5, 21, 25]). For some practical problems, as e.g. boundary value problems in
domains with a complicated geometry, it is impossible to construct such a sequence of
triangulations with a sufficiently coarse grid. Then, the methods mentioned above lose
their efficiency. To overcome this problem several approaches were proposed (see, e.g.,
[2, 7, 15, 18, 26]). In the present paper, we describe the construction of a preconditioner
based on the fictitious space lemma [18] and a multilevel decomposition of functions on
hierarchical grids. The construction of locally modified grids [3, 17, 23, 24] and the applica-
tion of these preconditioners is presented. The convergence rate of the conjugate gradient
method with the proposed preconditioner is independent of the discretization parameter.
Other preconditioning operators on locally fitted grids were suggested in [9, 11, 14, 16].

The paper is organized as follows. In section 2 we introduce the boundary value problem
of second order which we want to solve numerically by hierarchical methods. In section 3
we describe briefly the finite element discretization and the basic idea for the construction
of the preconditioner. Section 4 is devoted to the construction of structured triangular
grids which approximate the boundary of the domain with second order of accuracy. Two
similar methods of the construction are suggested. In the first one the resulting triangular
grid is constructed from an original uniform quadrilateral grid in a square containing the
original domain Ω and in the second approach the resulting grid is based upon a uniform
triangular grid in a triangle containing Ω. The main idea is to modify these uniform grids
in the neighbourhood of the boundary of the domain Ω such that one gets triangulations of
Ω which consists only of congruent triangles except near to the boundary. In section 5 we
discuss some advantages of the constructed grids. We also show that the constructed grids
are quasiuniform and thus can be used in multilevel preconditioning methods. Moreover
the regular structure of the grid makes the application of such methods especially beneficial
because there exists a natural one-to-one correspondence between the nodes of the resulting
grid and some subset of nodes of the original uniform structured grid. In section 6, we
describe the construction of preconditioners based on the fictitious space lemma and a
multilevel decomposition of functions on hierarchical grids. In the last section, numerical
results are given. These experiments confirm the theoretical results.

2 The original problem

Let Ω ∈ R2 be a domain with a Lipschitz continuous and twice piecewise continuously
differentiable boundary, i.e. it belongs to the class C0,1 ∩ PC2 [27]. In the domain Ω we
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consider the boundary value problem:

−
2
∑

i,j=1

∂

∂xi

(

aij(x)
∂u

∂xj

)

+ a0(x)u = f(x) for all x ∈ Ω ,

u(x) = 0 for all x ∈ Γ0 ,

∂u

∂N
+ σ(x)u = 0 for all x ∈ Γ1 ,

(1)

where
∂u

∂N
=

2
∑

i,j=1

aij(x)
∂u

∂xj

cos(n, xi)

is the conormal derivative, n denotes the outward normal to Γ = ∂Ω and Γ0 is a union of
a finite number of curvilinear segments, Γ = Γ0 ∪Γ1, Γ0 = Γ̄0. Here Γ̄0 denotes the closure
of Γ0.

We consider the weak formulation of problem (1):

Find u ∈ H1(Ω, Γ0) : a(u, v) = `(v) ∀v ∈ H1(Ω, Γ0) (2)

with the bilinear form

a(u, v) =
∫

Ω

(

2
∑

i,j=1

∂u

∂xj

∂v

∂xi

+ a0(x)uv

)

dx +
∫

Γ1

σ(x)uv ds

and the linear functional
`(v) =

∫

Ω

f(x)v dx .

The space H1(Ω, Γ0) is a subspace of the Sobolev space H1(Ω) defined by

H1(Ω, Γ0) = {v ∈ H1(Ω) : v(x) = 0 for x ∈ Γ0} .

Let us suppose that the coefficients aij, i, j = 1, 2, a0, and the right-hand side f of problem
(1) are given such that the bilinear form a(u, v) is symmetric, elliptic, and continuous on
H1(Ω, Γ0) × H1(Ω, Γ0), i.e.

a(u, v) = a(v, u) ∀u, v ∈ H1(Ω, Γ0)

α1‖v‖2
H1(Ω) ≤ a(v, v) ≤ α2‖v‖2

H1(Ω) ∀v ∈ H1(Ω, Γ0) ,

and the linear functional `(v) is continuous on H1(Ω, Γ0), i.e.

|`(v)| ≤ α3‖v‖2
H1(Ω) ,

where α1, α2, and α3 are positive constants.

It is well-known that under the above assumptions on a(u, v) and `(v) there exists a unique
solution of problem (2) [1].
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3 Finite element approximation

Let for a fixed positive parameter h (we always suppose that h is sufficiently small)

Ωh =
M
⋃

i=1

τi

be a triangulation of the domain Ω (Ωh is assumed to be a closed set). We suppose that
Ωh is a quasi-uniform triangulation [8], i.e.

1. for any h less than some h0 the length of the edges and the area of all triangles
belong to intervals [β1h, β2h] and [γ1h

2, γ2h
2], respectively,

2. there exists a one-to-one correspondence between points on Γ and Γh = ∂Ωh

and the distance between them is less than δh2,

(3)

where the constants β1, β2, γ1, γ2, and δ are independent of h.

If Γ1 = Γ, we suppose that Ω ⊂ Ωh; if Γ0 = Γ, we suppose that Ωh ⊂ Ω. If Γ0 6= ∅ and
Γ1 6= ∅, we make the following assumption: points where the boundary condition changes
should be at triangulation nodes, Γ1 ⊂ Ωh and Γ0 ⊂ R2 \ Ωh. The part of Γh approximating
Γ0 will be denoted by Γh

0 and that for Γ1 by Γh
1 . For the triangulation Ωh, we define the

space Hh(Ω
h, Γh

0) of real continuous functions which are linear on each triangle of Ωh and
vanish on Γh

0 . We extend these functions on Ω \ Ωh by zero.

The solution of the projection problem:

Find uh ∈ Hh(Ω
h, Γh

0) : a(uh, vh) = `(vh) ∀vh ∈ Hh(Ω
h, Γh

0) (4)

is called an approximate solution of problem (2). Aspects of the approximation properties
of (2) by (4) have been thoroughly studied e.g. in [8, 20]. We do not consider that here.

Each function uh ∈ Hh(Ω
h, Γh

0) is put in standard correspondence with a real column vector
u ∈ RN whose components are the values of the function uh at the corresponding nodes of
the triangulation Ωh \ Γh

0 . Then (4) is equivalent to the system of mesh equations

Au = f (5)

with
(Au, v) = a(uh, vh) ∀uh, vh ∈ Hh(Ω

h, Γh
0)

and
(f, v) = `(vh) ∀vh ∈ Hh(Ω

h, Γh
0) ,

where uh and vh are the prolongations of the vectors u and v; (., .) is the Euclidean scalar
product in RN .

The most efficient methods for solving the system of linear algebraic equations (5) are
preconditioned iterative processes with preconditioners B. The rate of convergence of
these methods depends on the constants c1 and c2 in the inequalities

c1(Bu, u) ≤ (Au, u) ≤ c2(Bu, u) ∀u ∈ RN . (6)

3



To construct effective preconditioning operators the following fictitious space lemma [18]
is useful.

Lemma 3.1 Let H and H̃ be Hilbert spaces with the scalar products (u, v)H and (ũ, ṽ)H̃ ,
respectively. Let A and Ã be symmetric positive definite continuous operators in the spaces
H and H̃:

A : H → H , Ã : H̃ → H̃ .

Suppose that R is a linear operator such that

R : H̃ → H , (ARṽ, Rṽ)H ≤ cR(Ãṽ, ṽ)H̃ ∀ṽ ∈ H̃ ,

and there exists an operator T such that

T : H → H̃ , RTu = u , cT (ÃTu, Tu)H̃ ≤ (Au, u)H ∀u ∈ H ,

where cR and cT are positive constants. Then

cT (A−1u, u)H ≤ (RÃ−1R∗u, u)H ≤ cR(A−1u, u)H ∀u ∈ H .

The operator R∗ is adjoint to R with respect to the scalar products (u, v)H and (ũ, ṽ)H̃ :

R∗ : H → H̃ , (R∗u, ṽ)H̃ = (u, Rṽ)H .

Note that for the construction and the implementation of a preconditioner of the type
B = RÃ−1R∗ only the existence of the operator T is required. In section 6, we will discuss
the construction of such a preconditioner more in detail.

In the next section, the triangulation Ωh will be constructed in the following way. At first,
we generate a uniform quadrilateral grid Dh for some domain in which the domain Ω is
embedded. In a second step, this uniform mesh will be modified locally into the mesh Ωh.

In our application, the Hilbert space H in Lemma 3.1 is the finite element space Hh(Ω
h, Γh

0),
and the Hilbert space H̃ will be defined in section 6. The operator A in Lemma 3.1 is
the operator from (5) and Ã will be constructed using the fictitious space lemma and a
multilevel decomposition [18] (see section 6).

4 Generation of the triangular grid

Let Ω be a bounded domain in R2 satisfying the previous conditions (see at the begin of
section 2). We suppose that the boundary of the domain Ω consists of a finite number of
parts Ci and each Ci is part of a twice continuously differentiable curve, i.e. part of a curve
from C2, without self-intersections. Then, the following inequalities are valid for the angle
αij between Ci and Cj at the end point for any i and j:

0 < α0 < αij < 2π − α0

with a constant α0.
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4.1 Quadrilateral source grid

The algorithm for the generation of a triangular grid satisfying the conditions (3) for do-
mains with a boundary from C2 without self-intersections and self-touching was suggested
and investigated in [17]. The algorithm consists in the following steps:

The domain Ω is embedded into a square D, where the edges of D are parallel to the axes of
a Cartesian coordinate system. Let K be the maximal module of the curvature of the parts
Ci for all i. Let R > 0 be chosen in such a way that a circle with the radius R touching
Ci in some point does not have another common point with Ci. Then, we introduce the
quantities (see [19])

σ = min

{

R

2
,

1

2K

}

and h0 =
σ

2
√

2
. (7)

Furthermore, we define two sets ωσ and Ωσ as follows. A point (x̄, ȳ) belongs to ωσ if
(x̄, ȳ) ∈ Ω and the distance between this point and the boundary ∂Ω is less than σ.
Analogously, a point (x̄, ȳ) belongs to Ωσ if (x̄, ȳ) /∈ Ω and the distance between the point
(x̄, ȳ) and ∂Ω is less than σ. For any point (x̄, ȳ) ∈ ωσ there exists only one normal vector
from (x̄, ȳ) to the boundary ∂Ω such that the segment from (x̄, ȳ) to the corresponding
point on ∂Ω lies entirely within ωσ. The same is true for any point (x̄, ȳ) ∈ Ωσ (see [19],
p. 20).

Let Dh
2

be a uniform quadrilateral grid in D with the distance between the nodes equals
to h = s/L < h0, where s is the length of the edges of D and L is a positive integer (see
Figure 1).

Figure 1: Domain Ω embedded into a square D and the quadrilateral grid Dh
2

We denote the nodes of the grid Dh
2

by Zi,j,

Zi,j = (xi, yj) , i, j = 0, 1, . . . , L ,

and the cells of Dh
2

by Di,j, where

Di,j = {(x, y) : xi ≤ x < xi+1 , yi ≤ y < yi+1} .
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Therefore,

D =
L−1
⋃

i,j=0

D̄i,j .

Starting from the grid Dh
2

we construct a locally modified grid D̃h
2
. For each node Zi,j =

(xi, yj) ∈ Dh
2

we find a corresponding node Z̃i,j = (x̃i, ỹj) ∈ D̃h
2

according to the following
rule. We consider rays which start from the node Zi,j and are parallel to the coordinate
axes. The points of intersection of these rays with the boundary Γ which are the nearest to
the node Zi,j in the corresponding direction are denoted by Pl, Pr, Pa, and Pb, see Figure 2.
If some intersection point does not exist then we consider it as infinitely far away.

-�

6

?

r

Zi,j

Pa

Pl Pr

Pb = ∞

Figure 2: Definition of the intersection points Pl, Pr, Pa, and Pb

The distances from Pl, Pr, Pa, and Pb to the node Zi,j are denoted by dl, dr, da, and db,
respectively. Let d be the minimum of these distances. If d is greater than h/2, then we
set Z̃i,j = Zi,j. If d is equal to h/2 and the corresponding intersection point lies right-side
or above the node Zi,j then this intersection point is Z̃i,j, otherwise we set Z̃i,j = Zi,j. If
d is less than h/2 then we put Z̃i,j equal to the corresponding intersection point. If the
selection of Z̃i,j is not unique then we accept any of the valid points. Such a situation
arises for example in the case when da = dr = h/2 and dl > h/2. Using this approach we
get from the grid Dh

2
in Figure 1 the locally modified grid D̃h

2
in Figure 3

Figure 3: The locally modified quadrilateral grid D̃h
2

We denote the correspondence between the nodes Zi,j = (xi, yj) of the grid Dh
2

and the
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nodes Z̃i,j = (x̃i, ỹj) of the locally modified grid D̃h
2

by the mapping

f−1 : (x̃i, ỹj) → (xi, yj) for all nodes (x̃i, ỹj) ∈ D̃h
2

. (8)

Lemma 4.1 Let Zi,j = (xi, yj) ∈ Dh
2
, Zi+1,j = (xi + h, yj) ∈ Dh

2
, f(Zi,j) 6= Zi,j, and

f(Zi+1,j) 6= Zi+1,j. If h ≤ h0, then one of the following conditions must be fulfilled:

(f(Zi,j) − Zi,j, Zi+1,j − Zi,j) = 0 and (f(Zi+1,j) − Zi+1,j, Zi+1,j − Zi,j) = 0 (9)

or
(f(Zi,j) − Zi,j, f(Zi+1,j) − Zi+1,j) = 0 , (10)

where (., .) denotes the Euclidean scalar product in R2.

Proof: Let us assume that neither (9) nor (10) is true. This is only possible if the points
Zi,j, Zi+1,j, Z̃i,j = f(Zi,j), and Z̃i+1,j = f(Zi+1,j) lie on a straight line. Three possible
essentially different cases of the location of these nodes are shown in Figure 4.

(a)

r r
Zi,j Zi+1,j

r r

Z̃i,j Z̃i+1,j

(b)

r r
Zi,j Zi+1,j

r r

Z̃i,j Z̃i+1,j

(c)

r r
Zi,j Zi+1,j

r r

Z̃i,j Z̃i+1,j

Figure 4: Different cases for the location of the nodes Zij, Zi+1,j, Z̃ij, Z̃i+1,j

Let us consider the case (a) (see, Figure 4) in detail. We suppose that the boundary of
the domain Ω intersects the left edge of the grid cell (see Fig. 5(a)). Let d1 denote the
distance between Zi,j and Z̃i,j, d2 the distance between Zi,j and Z̃i+1,j, and d3 the distance

between Zi,j and the intersection point Ŝ of the boundary and the left edge of the grid
cell. It is obvious that 0 < d1 < h/2, h/2 < d2 < h, and d1 < d3. According to the mean
value theorem there exists a point P̂ = (x̂, ŷ), xi ≤ x̂ ≤ xi + d1, yj − d3 ≤ ŷ ≤ yj, such
that the tangent to the boundary in this point is parallel to the line through the points
Z̃i,j = (xi + d1, yj) and Ŝ = (xi, yj − d3). Analogously, there exists a point P̆ = (x̆, y̆),
xi + d1 ≤ x̆ ≤ xi + d2, such that the tangent to the boundary in this point is parallel to
the line through (xi, yj) and (xi+1, yj). Let us draw the normal vectors ~̂n = (d3,−d1)

T and
~̆n = (0,−1)T to the boundary at the points P̂ and P̆ as it is shown in Figure 5 Let ĝ be

a straight line in direction ~̂n through the point Ŝ = (xi − d3, yj) and ğ a line in direction
~̆n through S̆ = Z̃i+1,j = (xi + d2, yj). Note that the point S, the intersection point of the

lines with the directions ~̂n and ~̆n through the points P̂ and P̆ , respectively, lies above the
line ĝ and left to the line ğ. The straight lines ḡ and ğ have the reprensentation

ĝ :

[

x
y

]

=

[

xi

yj − d3

]

+ λ̂

[

d3

−d1

]

, ğ :

[

x
y

]

=

[

xi + d2

yj

]

+ λ̆

[

0
−1

]

, λ̂, λ̆ ∈ R,
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(a)

Zi,j Zi+1,j

Z̃i,j Z̃i+1,j

t t

-� d1

-� d2

6

?

d3
s

P̂

s
P̆

~̆n
~̂n

ĝ

ğ

r

S

r Ŝ

rS̆

s

S̄

(b)

Zi,j Zi+1,j

Z̃i,j Z̃i+1,j

t t

s

P̂

s
P̆

~̆n

~̂n

ĝ

ğ

r

S

rŜ

rS̆

s

S̄

Figure 5: The boundary intersects the left and upper edge (a) or the upper and lower edge
(b) of the grid cell.

and therefore, we get the intersection point S̄ = (xi + d2, yj − d3 − d1d2/d3). The distances

%(S̄, Ŝ) and %(S̄, S̆) from S̄ to the boundary are:

%(S̄, Ŝ) = d2

√

1 +
(

d1

d3

)2

≤
√

2d2 ≤
√

2h ≤
√

2h0 ≤
σ

2
< σ ,

%(S̄, S̆) = d3 +
d1d2

d3

≤ d3 + d2 ≤
3

2
h ≤ 3

2
h0 ≤

3

4

σ√
2

< σ ,

(11)

where σ is defined in (7). The distances from S to the boundary are less than the distances
from S̄ to the boundary, and owing to (11) less than σ. Therefore, we have found a
point S ∈ ωσ from which exist two different normal vectors to the boundary. This is in
contratiction to the definition of ωσ.

Let us now consider the situation where the boundary does not intersect the left edge of
the grid cell (see Figure 5(b)). It is easy to see that it is similar to the previous case when
d3 = h.

Remark 4.1 The statement of Lemma 4.1 is also true if we consider instead the node
Zi+1,j the node Zi,j+1 = (xi, yj + h) ∈ Dh

2
.

Let us now consider a grid cell Di,j with the vertices Zi,j, Zi+1,j, Zi+1,j+1, and Zi,j+1.

Lemma 4.2 If three of the nodes Z̃i,j, Z̃i+1,j, Z̃i+1,j+1, and Z̃i,j+1 belong to ∂Ω, then these
nodes can not lie on the edges of the grid cell Di,j. That means that situations like those
shown in Figure 6 are impossivble.
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Zi,j+1 Zi+1,j+1

Zi+1,jZi,j

Z̃i,j+1
Z̃i+1,j+1

Z̃i+1,j

t

t

t

t t

tt

Figure 6: Situation, where the points Z̃i,j+1, Z̃i+1,j+1, and Z̃i+1,j lie on the edges of the
grid cell Di,j

Proof: The proof is analogous to the proof of Lemma 4.1. 2

It is easy to prove that all quadrilaterals of the grid D̃h
2

are convex, see, e.g., [17].

Let us now divide each quadrilateral into two triangles by a diagonal. If there exist quadri-
laterals having two nodes on the boundary which can be connected by a diagonal and one
of the other nodes lies inside Ω the other one outside Ω, then this diagonal will be selected.
For all other quadrilaterals the diagonal is selected in such a way that the minimum of the
values of the sinuses of the angles in the derived triangles is as large as possible. In this
way, we get the triangular grid D̃h

4. We denote the triangles of D̃h
4 by τi and define the

triangulation Ωh as the union of all triangles τi of D̃h
4 having at least one vertex inside Ω.

The grid D̃h
4 obtained from the locally modified quadrilateral grid D̃h

2
in Figure 3 is shown

in Figure 7.

Figure 7: The locally modified triangular grid D̃h
4

Using Lemma 4.1 and Lemma 4.2 the following theorem can be proved (see also [17]).
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Theorem 1 The lengths of the edges and the area of the triangles obtained by the method
described above belong to intervals [β1h, β2h] and [γ1h

2, γ2h
2], respectively, where

β1 = 0.5 , β2 =

√
18

2
, γ1 = 0.125 , and γ2 = 1.125 .

The sinus of any angle is greater than or equal to
√

10/10.

Proof: We have to consider all possible cases concerning the location of the moved nodes.
In this paper, we want to present only some representative cases and the extreme case
which leads to the constants β1, β2, γ1, γ2, and the smallest value of the sinuses of the
angles given in the statement of the Theorem.

Let us first consider the case where two neigbour nodes of a grid cell are moved to the
boundary. Owing Lemma 4.1 there exist only two possibilities concerning the location of
the moved nodes (see Figure 8):

– Node Zi,j+1 is moved along the line through the nodes Zi,j, Zi,j+1, and Zi+1,j+1 is moved
along the line through the nodes Zi+1,j, Zi+1,j+1, i.e. the nodes Zi,j+1, Z̃i,j+1, Zi+1,j+1, and
Z̃i+1,j+1 have the coordinates (xi, yj+1), (xi, yj+1+δ2h), (xi+1, yj+1), and (xi+1, yj+1+δ3h),
respectively (see Figure 8(a)), where −0.5 ≤ δ2, δ3 ≤ 0.5.

– Node Zi,j+1 is moved along the line through the points Zi,j, Zi,j+1, and Zi+1,j+1 is
moved along the line through the nodes Zi,j+1, Zi+1,j+1, i.e. the nodes Zi,j+1, Z̃i,j+1,
Zi+1,j+1, and Z̃i+1,j+1 have the coordinates (xi, yj+1), (xi, yj+1 + δ2h), (xi+1, yj+1), and
(xi+1 + δ3h, yj+1), respectively (see Figure 8(b)), where −0.5 ≤ δ2, δ3 ≤ 0.5.

Note that the shift of both nodes Zi,j+1 and Zi+1,j+1 along the line through these nodes is
impossible due to Lemma 4.1.

(a)

s s

s s

Zi,j Zi+1,j

Zi,j+1

Zi+1,j+1

s Z̃i,j+1

s Z̃i,j+1

sZ̃i+1,j+1

sZ̃i+1,j+1

(b)

s s

s s

Zi,j Zi+1,j

Zi,j+1

Zi+1,j+1

s Z̃i,j+1

s Z̃i,j+1
s

Z̃i+1,j+1

s

Z̃i+1,j+1

Figure 8: The possibilities for moving neighbour nodes of a cell

For the case (a), let the cell with the vertices Zi,j, Z̃i,j+1, Z̃i+1,j+1, and Zi+1,j be divided
into two triangles as shown in Figure 9. Then, the length di, the areas Aj of the triangles,
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α1

α6

α5

α4

α3

α2

A2

A1

d4

d3

d1

d5

d2

Figure 9: One possibility for dividing the quadrilateral into two triangles (case (a) of
Figure 8)

and the sinuses of the angles αk can be expressed in terms of δ2 and δ3 as follows:

d1 = h(1 + δ2), d2 = h
√

1 + (δ2 − δ3)2, d3 = h(1 + δ3),

d4 = h, d5 = h
√

1 + (1 + δ3)2,

A1 = h2 1 + δ2

2
, A2 = h2 1 + δ3

2
,

sin α1 =
1

√

1 + (1 + δ3)2
, sin α2 =

1
√

1 + (δ3 − δ2)2
,

sin α3 =
1 + δ2

√

1 + (δ3 − δ3)2
√

1 + (1 + δ3)2
,

sin α4 =
1

√

1 + (1 + δ3)2
, sin α5 = 1, sin α6 =

1 + δ3
√

1 + (1 + δ3)2
.

One gets analogous expressions if the other diagonal is selected. As described before, we
choose that diagonal which leads to two triangles for which the minimal value of the sinuses
of the angles is maximal. Then, a simple calculation gives

h

2
≤ di ≤

√
13h

2
,

h2

4
≤ Aj ≤

3h2

4
, sin αk ≥

√
5

5
.

Let us now consider case (b). Again, we distinguish the two possibilities for dividing the
quadrilateral into two triangles (see Figure 10) and choose the subdividing that gives the
maximum of the minima of sin αk. We obtain

h

2
≤ di ≤

√
13h

2
,

3h2

16
≤ Aj ≤

51h2

50
, sin αk ≥

√
5

5
.
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α1

α6
α5

α4

α3

α2

A2

A1

d4

d3

d1

d5

d2

α1 α6

α5

α4

α3

α2

A2

A1

d4

d3

d1
d5

d2

Figure 10: Two possibilities for dividing the quadrilateral into two triangles (case (ii) of
Figure 8)

Finally, let us discuss the situation shown in Figure 11 which is an extreme case. We
suppose that the boundary of Ω cuts the line through Zi,j, Zi,j+1 in the point with the
coordinates (xi, yj + 3h

2
), the line through Zi,j+1, Zi+1,j+1 in (xi + h

2
, yj + h), the line

through Zi+1,j , Zi+1,j+1 in (xi + h, yj + h
2
), and the line through Zi,j, Zi+1,j in (xi +

3h
2
, yj).

Furthermore, we suppose that one of the nodes Zi,j, Zi+1,j+1 lies inside Ω and the other
one outside Ω. Then, we have to select the diagonal drawn in Figure 11

Zi,j Zi+1,j

Zi,j+1

Zi+1,j+1

α1 α6

α5

α4

α3
α2

d4

d3

d1

d5

d2

A

Figure 11: Extreme case

As second extreme case we consider the following: The boundary of Ω cuts the line through
Zi,j, Zi+1,j in the point with the coordinates (xi + h

2
, yj) and the line through Zi,j, Zi,j+1

in (xi, yj + h
2
). Additionally, we suppose that one of the nodes Zi,j, Zi+1,j+1 lies inside Ω

12



and the other one outside Ω. Then, we get the following estimates

h

2
≤ di ≤

√
18h

2
,

h2

8
≤ Sj ≤

9h2

8
, sin αk ≥

√
10

10
.

All other possible cases lead to no smaller and no larger lower and upper bounds for the
length of the edges, the areas of the triangles, and the sinuses of the angles, respectively.
2

The algorithm described above can be easily generalized for domains with a piecewise
smooth boundary. We denote by ∆k points where smooth parts Pi and Pj of the boundary
∂Ω intersect. The construction of the correspondence between the nodes of Dh

2
and D̃h

2

will be done in three steps.

First step: We consider semi-opened squares (left and bottom edges are excluded) with the
center in the nodes Zi,j, edges parallel to the axes of the coordinate system, and the length
of the edges equals to h. We have to find that square which contains a given point ∆k.
Then, the midpoint Zi,j of this square will be moved into ∆k and therefore corresponds to
the point Z̃i,j = ∆k (see Figure 12(a)).

(a)

s s s

s s s

s s s

Zi,jZi−1,j

∆k

(b)

s s s

s s s

s s s

-�

6

?

Zi,jZi−1,j

∆k
Pl = ∞
×

Figure 12: (a) Finding (xi, yj) in the first step (b) Situation, where one intersection points
is considered as infinitely far away

The second step coincides almost completely with the algorithm described above for do-
mains with a smooth boundary. The only difference is that we will treat a point of in-
tersection of the ray starting at Zi,j with the boundary as infinitely far away when the
nearest node in the corresponding direction has been already ”shifted” to the boundary on
the previous step, see Figure 12(b).

Third step: This step is necessary for handling acute angles of the boundary as shown
in Figure 13. For example, in this situation the node Zi+1,j+1 is already moved to the

13



boundary corner ∆k in the first step of the algorithm. Since the distance between the node
Zi,j+1 and the intersection point Z̃i,j+1 is smaller than the distance between Zi,j+1 and Z̃i,j

the node Zi,j+1 is moved into the intersection point Z̃i,j+1 (see Figure 13). It is obvious
that the node Zi,j is not moved in the first two steps since the distance between this node
and the intersection point Z̃i,j is larger than h/2. Without moving the node Zi,j into the
intersection point Z̃i,j one would get a topologically incorrect triangulation. Consequently,
if the segment between the node Zi,j and some nearest node intersects the boundary in
a point which is different from endpoints of this segment, we move this node into the
intersection point regardless of the distance between the node Zi,j and the intersection
point.

s s s

s s s

s s s

-�

6

?

Zi,jZi−1,j

Zi,j+1 Zi+1,j+1∆k

×
Z̃i,j+1

PPi
1.2. 6

×
6

3.

Z̃i,j

Figure 13: Handling of acute angles of the boundary

Dividing of each quadrilateral into two triangles completes the generation of the triangula-
tion. The method of dividing was described above for domains with the smooth boundary.
An example for a locally modified grid in the case of domains with a piecewise smooth
boundary is shown in Figure 14.

It is easy to prove (by consideration of all possible configurations near the boundary cor-
ners) that the inequality

l >
h sin α

2
, α = min

i
αi (12)

for the length of the edges of the triangles obtained by the described procedure is fulfilled.
For the sinuses of the angles β of these triangles holds

sin β > M(α) > 0 , (13)

where M(α) is a positive function.
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Figure 14: Locally modified grid for a domain with a piecewise smooth boundary

Remark 4.2 If the conditions Ω ⊂ Ωh for Γ1 = Γ or Ωh ⊂ Ω for Γ0 = Γ are not fulfilled,
then we can modify our mesh by shifting near boundary nodes outside or inside of Ω in a
distance of the order h2 in such a way that these conditions are satisfied. In such a case the
constants β1, β2, γ1, and γ2 (see Theorem 1) will be sligthly changed but will not depend
on h.

4.2 Triangular source grid

A similar algorithm for the generation of a triangular grid can be used in the case when the
original uniform grid is a triangular one. A mesh generation algorithm using a triangular
source grid is also described in [22]. This algorithm can be applied to domains with a
boundary that consists of a finite number of closed twice-continuously differentiable arcs
which do not touch or cut each other or themselves (i.e. the domain is not necessarily
simple connected). Our algorithm works also in the case of a piecewise smooth boundary.

In some sense a triangular source grid is even more preferable than a quadrilateral one,
because one step of the algorithm – dividing quadrilaterals into two triangles – becomes
unnecessary and the resulting grid mainly consists of optimal (equilateral) triangles. The
generation of the grid starts from the embedding of the domain Ω into a big triangle D
with internal angles equal to π/3. At first, we build a uniform triangulation Dh

4 in D, see
Figure 15(a).

Then, we perform exactly the same actions (except the last one) as described in subsec-
tion 4.1, i.e. at the first step we shift nearest nodes to the endpoints of parts Ci of the
boundary. Then, we calculate the distances from the given node to the boundary along
grid edges and shift the node to the point of intersection of the edge and the boundary if
the minimal distance is less than h/2 and so on. Actually we can use one program for the
generation of the grid in both cases. All differences are located in low level procedures like
these one:

• get initial coordinates of the node,

• get the number of neighbour nodes,

• get grid coordinates of the neighbour node for the given node.
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(a) (b)

Figure 15: (a) A Domain embedded into a triangle D and the source grid Dh
4; (b) The

locally modified triangular grid D̃h
4

A resulting locally modified grid looks like the grid shown in Figure 15(b).

It follows from the previous considerations and may be easily proved that inequalities
similar to (12) and (13) are also valid.

5 Advantages of the generated grids

Locally modified triangular grids generated by the methods described in section 4 possesses
some advantages.

• Boundary approximation

The proposed algorithm guarantees an approximation of the boundary of the domain con-
sidered with a second order of accuracy. As it is well-known, the accurate approximation
of the boundary is one of the key properties for a good approximation of the problem we
want to solve numerically.

• Regular structure

The constructed meshes have a regular structure. This feature is difficult to overestimate
because it decreases the amount of the memory required for storing the generated grid and
the number of arithmetical operations required for the generation of the stiffness matrix.
Indeed, we must store only coordinates of the shifted nodes because coordinates of the rest
nodes can be found according to simple formula. The number of shifted nodes has the
order O(l/h), where l is the length of the boundary. Using the well-known and widely used
technique of so-called ”hash tables” we may decrease the amount of memory required for
holding the whole grid up to O(l/h). Moreover in the case of the triangular source grid we
do not need to store the structure of the grid (information about links between adjacent
nodes) because the structure is absolutely regular. On the other hand, due to the regular
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structure and congruence of all finite elements of the grid everywhere inside of the domain
except narrow the band near the boundary, we have to compute only one element stiffness
matrix which is the same for all these triangles in the case of constant coefficients in the
equation (1). Calculations are faster even in the case of variable coefficients.

• Local nature of the generation

The generation of the grid has a ”local” nature and requires only O(l/h) operations.
Indeed, in the first step of the grid generation, when we shift the nearest node to the
corner points of the boundary, we can find the required node with a small fixed number of
operations due to the regular initial positions of the nodes. In the second step, when we
shift nodes near to the boundary, we ”walk” along the boundary and check only nearest
nodes. It gives us O(l/h) operations in the second step. In the third step we have to check
only nodes that fall into some neighbourhood of the corners on the boundary. At last,
in the fourth step for quadrilateral source grids we must check only those quadrilaterals
which have shifted nodes.

• Applicability of multilevel preconditioners

The generated grids are extremely suitable for using multilevel preconditioning operators
(BPX-like). This will be discussed in the next section.

6 The construction of the preconditioner B

Let us assume that h = 2−Js, where s is the length of the sides of D and J is a positive
integer.

Let Qh denote the minimal figure that consists of cells D̄i,j and contains Ωh, i.e. Ωh ⊂ Qh;
let Sh be the set of boundary nodes of Qh. We subdivide the set Sh into two subsets Sh

0

and Sh
1 as follows: If

D̄i,j ∩ Γ0 6= ∅
all nodes of D̄i,j ∩ Sh are in Sh

0 , and

Sh
1 = Sh \ Sh

0 .

Additionally, we consider in D a sequence of grids

Dh
0 , Dh

1 , . . . , Dh
J ≡ Dh

with the step sizes
h0 = s , h1 = 2−1s , . . . , hJ ≡ h = 2−Js .

We triangulate these grids hierarchically. The restriction of the triangulation Dh
J on Qh

will be denoted by Qh
4 and the triangles of Qh

4 by Ti. Corresponding to the triangulations
Dh

0 , Dh
1 , . . . , Dh

J we define the finite element spaces

Hh(D
h
0 , ∂Dh

0 ) ⊂ Hh(D
h
1 , ∂Dh

1 ) ⊂ · · · ⊂ Hh(D
h
J , ∂Dh

J) ≡ Hh(D
h, ∂Dh)
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and denote by {Φ(`)
i }N`

i=1 the usual nodal basis of the space Hh(D
h
` , ∂Dh

l ), ` = 0, 1, . . . , J .

By Φ̃
(`)
i we denote the restriction of the basis function Φ

(`)
i onto Qh

4.

In the following, we will use the space Hh(Q
h
4, Sh

0 ) as the fictitious space H̃ in Lemma 3.1.
We now define the projection operator R,

R : Hh(Q
h
4, Sh

0 ) → Hh(Ω
h, Γh

0) ,

the extension operator T ,

T : Hh(Ω
h, Γh

0) → Hh(Q
h
4, Sh

0 ) ,

and an easily invertible operator in the space Hh(Q
h
4, Sh

0 ). As described in section 4, there
exists a one-to-one correspondence between nodes (x̃i, ỹj) of the triangulation Ωh and
some subset of nodes (xi, yj) of Qh. We want to use this correspondence in the definition
of the operators R and T . Let us begin with the operator R. For a given mesh function
Uh ∈ Hh(Q

h
4, Sh

0 ) we define a function uh ∈ Hh(Ω
h, Γh

0) as follows (see also Figure 16). We
put

uh(x̃i, ỹj) = (RUh)(x̃i, ỹj) = Uh(xi, yj) for all nodes (x̃i, ỹj) from Ωh

and the function uh is equal to zero at nodes on Γh
0 .

Qh

u

�
�
�
���

(xi, yj) B
B

B
B
BBM

Ωh

u

B
B

B
BBM

(x̃i, ỹj)�
�
�
�
��

Figure 16: Correspondence between the nodes (xiyj) and (x̃i, ỹj)

Now, we define the operator T . For a given function uh ∈ Hh(Ω
h, Γh

0) we have to define a
function Uh ∈ Hh(Q

h
4, Sh

0 ). The function Uh is equal to zero at nodes on Sh
0 . At the other

nodes, Uh is defined as follows. If the vertex (xi, yj) of the triangulation Qh corresponds
to some vertex (x̃i, ỹj) of the triangulation Ωh, then we put

Uh(xi, yj) = (Tuh)(xi, yj) = uh(x̃i, ỹj) .

If the vertex (xi, yj) does not belong to f−1(Ωh) (for the definition of f see (8)), and let
Dkl be a cell which has (xi, yj) (e.g. the node marked by in Figure 16) as a node and
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Dkl ∩ f−1(Ωh) 6= ∅, then we consider any node (xn, ym) of Dkl which belongs to f−1(Ωh)
and put

Uh(xi, yj) = Uh(xn, ym) .

In the following, we show that these operators R and T fulfil the conditions required in
the fictitious space lemma (Lemma 3.1).

Lemma 6.1 There exist constants cR and cT , which are independent of h, such that

‖RUh‖H1(Ωh) ≤ cR‖Uh‖H1(Qh) , (14)

cT‖Tuh‖H1(Qh) ≤ ‖uh‖H1(Ωh) , (15)

and
RTuh = uh ∀uh ∈ Hh(Ω

h, Γh
0) . (16)

Proof: Since the values of the functions uh at the vertices of Ωh and Uh at the vertices of
f−1(Ωh) are the same, the identity (16) is obvious.

Let us introduce the following discrete norms

‖uh‖H1
h
(Ωh) =

∑

τi∈Ωh

{

h2
(

(uh(zi1))
2 + (uh(zi2))

2 + (uh(zi3))
2
)

+ (uh(zi1) − uh(zi2))
2 + (uh(zi2) − uh(zi3))

2

+ (uh(zi3) − uh(zi1))
2
}

and
‖Uh‖H1

h
(Qh

4
) =

∑

Ti∈Qh
4

{

h2
(

(Uh(Zi1))
2 + (Uh(Zi2))

2 + (Uh(Zi3))
2
)

+ (Uh(Zi1) − Uh(Zi2))
2 + (Uh(Zi2) − Uh(Zi3))

2

+ (Uh(Zi3) − Uh(Zi1))
2
}

,

where zi1 , zi2 , zi3 are the vertices of the triangle τi ∈ Ωh and Zi1 , Zi2, Zi3 are the vertices
of the triangle Ti ∈ Qh

4, respectively.

It is well-known that these discrete norms and the corresponding Sobolev norms are equiv-
alent with constants independent of h, supposed that the properties (3) are fulfilled for
the triangulations (see, e.g., [20]). It is easy to prove that there exist constants c̃R and c̃T ,
independent of h, such that

‖RUh‖H1
h
(Ωh) ≤ c̃R‖Uh‖H1

h
(Qh

4
)

and
c̃T‖Tuh‖H1

h
(Qh

4
) ≤ ‖uh‖H1

h
(Ωh) .

From these inequalities and from the equivalence of the discrete norms and the Sobolev
norms we get the statement of the lemma. 2
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Remark 6.1 If Dh is a triangular grid, then Ωh = f(Qh) and the matrix representation
of the restriction operator R and of the extension operator T are the identity operators.

Next, we construct the preconditioner B. We define an operator Ã in the following way:

Ã−1Uh =
J
∑

`=0

∑

suppΦ
(`)
i

∩Qh 6=∅

suppΦ
(`)
i

∩Sh
0

=∅

(Uh, Φ
(`)
i )L2(Qh)Φ̃

(`)
i ∀Uh ∈ Hh(Q

h
4, Sh

0 )

and the preconditioner B by
B−1 = RÃ−1R∗ . (17)

From [4, 18, 21, 25] we have constants c3 and c4, independent of h, such that

c3‖Uh‖2
H1(Qh) ≤ (Ãu, u) ≤ c4‖Uh‖2

H1(Qh) (18)

for arbitrary Uh ∈ Hh(Q
h
4, Sh

0 ). Here Ã is the matrix representation of the operator Ã.
Since the matrix A generates a H1-equivalent norm in the space Hh(Ω

h, Γh
0), then from

Lemma 6.1, Lemma 3.1, and (18) we get the following theorem.

Theorem 2 There exist positive constants c5 and c6, independent of h, such that

c5(A
−1u, u) ≤ (B−1u, u) ≤ c6(A

−1u, u) ∀u ∈ RN .

7 The results of the numerical experiments

In this subsection, we apply our algorithms to the boundary value problem

−∆u = f in Ω

u = 0 on ∂Ω ,
(19)

where Ω is the unit square (domain 1), the circle, which is embedded into the unit square
(domain 2), see Figure 1, or a square with the extracted circle and the wide cut (domain 3),
see Figure 14. We study the convergence behaviour of the algorithm presented in previous
section.

Problem (19) is discretized as explained in section 3. For the construction of the locally
modified grids both the quadrilateral and the triangular source grids are used. We solve the
systems of algebraic finite element equation (5) by means of the preconditioned conjugate
gradient method with the preconditioner defined by (18) in section 6.

To be able to measure the error of the iterates in the A-energetic norm we choose in
(19) the right-hand side f(x) = 0 (i.e. the exact solution is u = 0). As initial guess for
the iteration process, a vector is used whose components correspond to the values of the

function 1 − 2
√

(x − 0.5)2 + (y − 0.5)2 in the nodes of the finite element meshes. In the
Tables 1 and 2, we present the numbers of iterations which we need to solve the systems
of finite element equations with a relative error of 10−5 measured in the A-energetic norm.

In the Tables 1 and 2, J is the characteristic of the initial regular grid, such that the
number of nodes in each directions is equal to 2−J .
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Table 1: Number of iterations (#it) for quadrilateral source grid

J 5 6 7 8 9 10

domain 1 9 10 10 14 16 16

#it domain 2 10 14 17 19 22 23

domain 3 7 11 13 15 17 19

Table 2: Number of iterations (#it) for triangular source grid

J 6 7 8 9 10

domain 1 9 11 11 12 12

#it domain 2 15 16 19 20 21

domain 3 7 9 11 13 14
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[4] F. A. Bornemann and H. Yserentant. A basic norm equivalence for the theory of multilevel
methods. Numer. Math., 64:455–476, 1993.

[5] J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners. Math. Comput.,
55(191):1–22, 1990.

[6] A. Brandt. Multi–level adaptive solutions to boundary value problems. Math. Comput.,
31:333–390, 1977.

[7] T. F. Chan and B. Smith. Domain decomposition and multigrid algorithms for elliptic prob-
lems on unstructured meshes. CAM Report 93–42, Department of Mathematics, University
of California, Los Angeles, 1993.

[8] P. Ciarlet. The finite element method for elliptic problems. North–Holland, Amsterdam,
1978.

21



[9] V. G. Dyadechko, S. A. Finogenov, Yu. I. Iliash, A. V. Tkhir, and Yu. V. Vassilevski. Efficient
solving the Poisson equation: fictitious domains&separable preconditioners on rectangular
locally fitted meshes versus algebraic multigrid/fictitious space method on unstructured tri-
angulations. Technical Report. Mathematical Institute A, Stuttgart University, Germany,
1996.

[10] R. P. Fedorenko. Relaksacionnyj metod rešenija raznostnych elliptičeskich uravnenij.
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