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1 Introduction
Many problems in engineering and natural sciences can be described by boundary value
problems, e.g., the heat transfer, the deformation of bodies under given loads, electrical and
magnetic fields. Multilevel methods are often used practical tools for solving of the above
problems. There are different approaches for constructing multilevel methods and different
techniques for the convergence analysis of these methods. For convergence proofs with-
out regularity assumptions on the solution the strengthened Cauchy-Buniakowski-Schwarz
(C.B.S.) inequality is the main ingredient (see, e.g., [4, 6, 7, 8, 11, 12, 14, 15, 19, 23, 25,
26, 30]). In these cases one gets estimates of the convergence factor in dependence on the
constant in the C.B.S. inequality. For that reason it is of practical interest to have esti-
mates of this constant. In the literature the C.B.S. inequality related to different boundary
value problems is considered (see, e.g., [3, 2, 1, 4, 6, 5, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22,
25, 28, 27, 29, 30]). In our paper we want to concentrate on elasticity problems in three-
dimensional domains discretized by means of the finite element method with tetrahedral,
pentahedral, and hexahedral elements. For elasticity problems in two-dimensional domains
there are several results published. Jung considers in [15] and [14] discretizations of lin-
ear elasticity problems by means of hierarchical piecewise linear ansatz functions on right
isosceles triangles with mesh refinement by a bisection and a non-standard division of each
triangle into four congruent subtriangles, respectively. In that papers the dependence of
the constant in the C.B.S. inequality on the Poissons ratio is given by formulas. Margenov
proves in [20] that

√
0.75 is an upper bound of the C.B.S. constant for triangulations with

right isosceles triangles and standard division into four subtriangles. Additionally, he shows
by numerical computations that

√
0.75 is also an upper bound for arbitrary right triangles.

Achchab and Maitre consider in [3] discretizations with arbitrary triangular elements and
hierarchical piecewise linear ansatz functions and prove that

√
0.75 is an upper bound of

the C.B.S. constant in this general case. In [16], Jung and Maitre prove that between
the C.B.S. constant (γ`)2 in the case of hierarchical piecewise linear ansatz functions and
the constant (γq)2 in the case of piecewise linear/piecewise quadratic ansatz functions the
relation (γ`)2 = 0.75(γq)2 holds for all bilinear forms which are a linear combination of
terms of the type

∫
Ω

∂u
∂xi

∂v
∂xj

dx, i = 1, 2. Additionally, they derive the dependence of the

C.B.S. constant on the Poisson ratio for discretizations with right isosceles triangles and
standard division of each triangle into four subtriangles in the mesh refinement. Further-
more, they consider the reference tetrahedron to get a first result for three-dimensional
elasticity problems and give the numerically determined estimate

√
0.9 for the C.B.S. con-

stant. Achchab, Axelsson, Laayouni, and Souissi present in [2, 18] an analytical proof that√
0.9 is an upper bound of the C.B.S. constant in the case of triangulations with arbitrary

tetrahedral elements. This result is generalized in [1] to bilinear forms which are linear
combination of terms of the type

∫
Ω

∂u
∂xi

∂v
∂xj

dx, i = 1, 2, 3.

In the present paper we give numerically determined upper bounds of the C.B.S. con-
stant in dependence on the Poisson ratio. Hereby we consider discretizations with tetra-
hedra, pentahedra, and hexahedra and different polynomial degree of the finite element
ansatz functions. We discuss octasection and bisection approaches.
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The paper is organized as follows: In Section 2 we describe the considered elasticity
problem and introduce some notation. In Section 3 some general remarks on the com-
putation of the C.B.S. constant are summarized. In Sections 4, 5, and 6 estimates of
the C.B.S. constant on tetrahedral, pentahedral, and hexahedral triangulations are given.
Finally, we discuss the presented results.

2 Setting of the problem

Let us consider the following linear elasticity problem in a three-dimensional domain Ω
with the boundary Γ = Γ0 ∪ Γ1, meas(Γ0) 6= 0:

Find the displacement vector u = [ui]
3
i=1 ∈ [C2(Ω) ∩ C1(Ω ∪ Γ1) ∩ C(Ω̄)]3 such that

3∑

j=1

∂σij(u)

∂xj

+ fi = 0 in Ω , i = 1, 2, 3,

ui = 0 on Γ0 , i = 1, 2, 3,
3∑

j=1

σij(u)nj = gi on Γ1 , i = 1, 2, 3,

(1)

hold, where

σij(u) = λ
3∑

k=1

εkk(u)δij + 2µεij(u).

are the components of the stress tensor and

εij(u) =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, i, j = 1, 2, 3,

are the components of the strain tensor. The Lamé coefficients λ and µ can be expressed
by

λ =
Eν

(1 + ν)(1 − 2ν)
and µ =

E

2(1 + ν)
(2)

with Young’s elasticity modulus E and the Poisson ratio ν. The vector n = (n1, n2, n3)
T

denotes the outward unit normal to Γ,
The weak formulation of problem (1) reads as:

Find u ∈ V = {v ∈ [H1(Ω)]
3 | v = 0 on Γ0} such that

a(u,v) = `(v), ∀v ∈ V.

with

a(u,v) = λ
∫

Ω
div(u)div(v) dx + 2µ

3∑

i,j=1

∫

Ω
εij(u)εij(v) dx,

`(v) =
∫

Ω
(f ,v) dx +

∫

Γ1

(g,v) dσ .
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We suppose that

f = [fi]
3
i=1 ∈ [L2(Ω)]3 and g = [gi]

3
i=1 ∈ [L2(Γ1)]

3 .

Using the representation (2) of the Lamé coefficients we can express the bilinear form a(., .)
by

a(u,v) = 2µ


 ν

1 − 2ν

∫

Ω
div(u)div(v) dx +

3∑

i,j=1

∫

Ω
εij(u)εij(v) dx


 . (3)

3 General remarks on the computation of the C.B.S.

constant

In this Section, we summarize known techniques for the computation of the constant in
the strengthened C.B.S. inequality, see, e.g., [12].

Let T̂ be a finite element of reference. The element T̂ will be concretized further
concerning different triangulations. We fix an initial triangulation

τ0 = {T ∈ τ0 | T = FT (T̂ ), FT is an invertible affine transformation}

of the domain Ω and generate a sequence of triangulations {τk}, k = 0, 1, 2, . . . that
form successive refinements of τ0. Let Vk−1 be a finite element space associated with the
triangulation τk−1 and Ṽk be the correspondent hierarchical space such that Vk is the direct
sum of Vk−1 and Ṽk, Vk−1 ∩ Ṽk = {0}, [12].

Our aim is to get upper estimates of the constant γ in the C.B.S. inequality.

|a(u,v)| ≤ γ (a(u,u))1/2 (a(v,v))1/2 , ∀u ∈ Vk−1, ∀v ∈ Ṽk. (4)

Estimates of the constant γ can be obtained locally, i.e. elementwise, see e.g., [4, 12]. We
consider on each element of the triangulation τk−1 the strengthened C.B.S. inequality

|aT (u,v)| ≤ γT (aT (u,u))1/2 (aT (v,v))1/2 , ∀u ∈ Vk−1, ∀v ∈ Ṽk, T ∈ τk−1 , (5)

where the bilinear form aT (u,v) is the restriction of the bilinear form a(u,v) on the finite
element T . Then for the constant γ in (4) holds

γ = max
T∈τk−1

γT , k = 1, 2, . . .

(see [4, 12, 19, 26]). To compute the constant γT in (5) we construct for each element
T ∈ τk−1 the so-called two-level element stiffness matrix on level k:

A
(k)
T =

(
AT,11 AT,12

AT,21 AT,22

)
, T ∈ τk−1 ,

where the indices “1” and “2” correspond to the new nodes in the triangulation τk and to
the nodes in the triangulation τk−1, respectively, see [12]. Then, AT,22 = A

(k−1)
T is valid.
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We note that the element stiffness matrix A
(k−1)
T of level k−1 and the corresponding Schur

complement
ST = A

(k−1)
T − AT,21A

−1
T,11AT,12

have one and the same null space, i.e. N (ST ) = N (A
(k−1)
T ). In the case of three-dimensional

linear elasticity problems the space N (ST ) has the dimension 6.
For getting an estimate of γT we consider the generalized eigenvalue problem

STvT = λA
(k−1)
T vT . (6)

The bilinear form (3) is coercive, symmetric and continuous on Ω. Since we have a hi-
erarchical refinement for obtaining of any fine triangulation, the two-level matrices AT ,
T ∈ τk−1 are symmetric and positive semidefinite with one invertible block in the main
diagonal. Then we can apply the pure algebraic approach described by Eijkhout and
Vassilevski in [12] for obtaining

λT, min = 1 − γ2
T . (7)

where λT, min is the smallest non-zero eigenvalue of problem (6). Let n be the dimension
of the space Vk−1. We define a matrix BT = [w1 w2 . . . wp]n×p, where w1,w2, . . . ,wp /∈
N (A

(k−1)
T ) and Rn = N (A

(k−1)
T ) + span{w1,w2, . . . ,wp}. Then, the smallest non-zero

eigenvalue of (6) is equal to the smallest eigenvalue of the following general eigenvalue
problem [12, Lemma 2]

ST vT = λA(k−1)
T vT , (8)

with ST = B>
T ST BT and A(k−1)

T = B>
T A

(k−1)
T BT (see also [12, 13, 26]). Then, we shall use

(8) for computing the element γT -constant.
Using the fact that

ker{aT} =
{
v ∈ V

k|T : aT (v, z) = 0, ∀z ∈ V
k|T
}
⊂ V

k−1|T

= span








1
0
0


 ,




0
1
0


 ,




0
0
1


 ,



−x2

x1

0


 ,




0
−x3

x2


 ,



−x3

0
x1








we can determine vectors spanning the null space of the matrix A
(k−1)
T and find then

appropriate vectors for defining the matrices BT .
We note that µ is a factor in the bilinear form (3). Therefore having in mind (6), (7),

and (8) we conclude that the constant γT is independent of µ.
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4 Splitting of the finite element spaces on the tetra-

hedron meshes

For our further considerations we make the following assumptions on the domain Ω:

(H1) Ω is a polyhedron with all faces parallel to the coordinate planes;

(H2) all edges of Ω have rational lengths.

We define a class of similarity [T ] in an arbitrary triangulation τ of the domain Ω by

[T ] = {L ∈ [T ] | L ∼ T, L ∈ τ},

i.e. one finite element L belongs to the class [T ] when L is geometrically similar to the
finite element T ∈ τ .

We introduce two special elements: the finite element of reference T̂ and a regular pyra-
mid K. Let T̂ be the canonical 3D simplex with vertices â1(1, 0, 0), â2(0, 1, 0), â3(0, 0, 1),
â4(0, 0, 0) (see Figure 1). The regular tetrahedron K is defined by the vertices b1(1, 1,−1),
b2(−1, 1, 1), b3(1,−1, 1), and b4(−1,−1,−1).

a1 a2

a3

a4

a5

a6

a7

a8

a9

a10

T{1} = ∆a1a5a6a7,
T{2} = ∆a5a2a8a9,
T{3} = ∆a6a8a3a10,
T{4} = ∆a7a9a10a4,
T{5} = ∆a5a6a7a9,
T{6} = ∆a5a6a8a9,
T{7} = ∆a6a8a9a10,
T{8} = ∆a6a7a9a10.

Figure 1: The decomposition of the tetrahedron T = ∆a1a2a3a4 into eight subtetrahedra

We consider sequences of triangulations {τk}, k = 0, 1, 2, . . . , of the domain Ω satisfy-
ing the following conditions:

(i) The initial triangulation τ0 contains only tetrahedra;

(ii) The triangulation τ1 is obtained from τ0 by dividing each element of τ0 into eight
elements as it is shown in Figure 1. The nodes are numbered using the strategy of
Bey [10];

(iii) The triangulation τk is obtained from τk−1 by the same way as τ1 is obtained from τ0

in (ii).

This approach for obtaining the triangulation τk is called regular refinement strategy.
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Theorem 1 Let the domain Ω fulfils the hypotheses (H1) and (H2). Then using regular
refinements we can obtain a sequence of triangulations {τk}, k = 0, 1, 2, . . . , such that
there are only five classes of similarity for all elements in all triangulations τk.

Proof. Since the hypotheses (H1) and (H2) hold, the domain Ω can be partitioned by
cubes. There exists a partition of any cube into five tetrahedra, four of them from the
class [T̂ ] and one from the class [K] [24, p. 56]. To obtain an initial triangulation of the
domain Ω we perform two steps:

(a) Decompose Ω by cubes;
(b) Decompose each cube from (a) into five tetrahedra of classes [T̂ ] and [K].

An arbitrary element T ∈ τ0 can be obtained by T = FT (T̂ ) or by T = FT (K), with the
invertible affine linear transformation FT . Then it is sufficient to decompose the elements
T̂ and K for obtaining any triangulation τk, k = 1, 2, 3, . . . .

Following the numeration strategy of Bey [10] we decompose the finite element of
reference T̂ into eight subtetrahedra T̂{i1}, 1 ≤ i1 ≤ 8 (see Figure 1). To obtain the
second level we divide each element T̂{i1}, 1 ≤ i1 ≤ 8, again into eight subtetrahedra
T̂{i1, i2}, 1 ≤ i2 ≤ 8. Thus we get a family of tetrahedra:

{T̂ , T̂{i1}, T̂{i1, i2}, T̂{i1, i2, i3}, . . . , T̂{i1, i2, i3, . . . , ik}, . . . | 1 ≤ in ≤ 8, k ∈ N}. (9)

Considering all tetrahedra in (9) we could obtain at most six classes of similarity [10, p. 59].
But having in mind that we decompose the reference tetrahedron we can prove that we
get only three classes. We have the following:

[T̂ ], [T̂{5}], [T̂{6}] (10)

in the first level. Further we decompose the tetrahedra of the first level and obtain in the
second level:

T̂{5, i2} ∈ [T̂{5}] , 1 ≤ i2 ≤ 4, T̂{5, i2} ∈ [T̂{6}] , i2 = 5, 7,

T̂{5, i2} ∈ [T̂ ] , i2 = 6, 8,

T̂{6, i2} ∈ [T̂{6}] , 1 ≤ i2 ≤ 4, T̂{6, i2} ∈ [T̂{5}] , i2 = 5, 7,

T̂{6, i2} ∈ [T̂ ] , i2 = 6, 8.

From this we can conclude that all tetrahedra in the next levels belong to one of the three
classes given in (10).

Let us now consider the regular tetrahedron K. In the first level we have eight subte-
trahedra as follows:

K{i1} ∈ [K] , 1 ≤ i1 ≤ 4 and K{i1} ∈ [K{5}], 5 ≤ i1 ≤ 8.

In the second level we have to decompose the finite element K{5}. We obtain

K{5, i2} ∈ [K] , i2 = 6, 8 and K{5, i2} ∈ [K{5}] , i2 = 1, 2, . . . , 5, 7 .

6



Therefore, there are only two classes of similarity decomposing the regular pyramid K.
Consequently, we have the following classes:

[T̂ ], [T̂{5}], [T̂{6}], [K], [K{5}]

for all levels of triangulations of the domain Ω 2.

Corollary 1 Let the conditions of Theorem 1 be satisfied and the initial triangulation of
the domain Ω is obtained by steps (a) and (b). If the sequence of triangulations {τk},
k = 0, 1, 2, . . . is obtained by a regular refinement strategy then the constant γ in (4) can
be computed by

γ = max
{
γ(T̂ ), γ(T̂{5}), γ(T̂{6}), γ(K), γ(K{5})

}

where γ(T ) is the local γ-constant obtained on the finite element T .

Proof. The corollary follows directly from Theorem 1 and [12]. 2

In the following we present estimates of the constant γT for the five classes of similar-
ity. Different possibilities for the definition of the finite element spaces Vk−1 and Ṽk are
considered. We show in Figures 2 – 6 how the constant γT depends on the Poisson’s ratio
ν. The results are obtained by solving the generalized eigenvalue problem (8) numerically
and computing γT according to (7). To distinguish the constants γT for different finite ele-
ment discretizations we denote it by an additional upper index, i.e. in the case of piecewise
polynomial finite element ansatz functions of degree m we use the notation γ

(m)
T . In the

figures, we mark the plots for γ(T̂ ), γ(T̂{6}), γ(T̂{5}), γ(K), and γ(K{5}) by 1, 2, 3, 4,
and 5, respectively.

Let us start with the case, where the finite element spaces Vk−1 and Ṽk are defined by
piecewise polynomials of degree not exceeding m, i.e.

V
(m)
k−1 = {v = (v1, v2, v3)

> ∈ [C0(Ω)]3 | vi|T = v̂i ◦ F−1
T ,

v̂i ∈ Pm(T̂ ), i = 1, 2, 3, ∀T ∈ τk−1}, m = 1, 2, 3 .
(11)

First we consider the case with piecewise linear ansatz functions for defining the spaces
Vk−1 and Ṽk, respectively. Figure 2a) shows the dependence of the C.B.S. constant γ

(1)
T on

the Poisson’s ratio ν. The plots show that the C.B.S. constant (γ
(1)
T )2 is bounded by 0.9 as

it is proved analytically by Achchab, Axelsson, Laayouni, and Souissi in [2] and correspond
to the results given in [16].

If the finite element spaces Vk−1 and Ṽk are defined by means of piecewise quadratic

or piecewise cubic functions, we get the constants γ
(2)
T or γ

(3)
T , respectively, which are

illustrated in Figure 2b) and Figure 3. We have

max
(
γ(m)(T̂{5}), γ(m)(K{5})

)
< γ(m)(T̂{6}), ∀ν ∈

(
0,

1

2

)
, m = 2, 3 ,

0.981 < γ(2)(T̂{6}) < 1, ∀ν ∈
(
0,

1

2

)
, m = 2, 3
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and

0.99 < γ(3)(T̂{6}) < 1, ∀ν ∈
(
0,

1

2

)
.

1

2

3

4

5

γ2

ν0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90

0.0 0.1 0.2 0.3 0.4 0.5

a)

1

2

3

4

5

γ2

ν0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

0.0 0.1 0.2 0.3 0.4 0.5

b)

Figure 2: a) Piecewise linear functions b) Piecewise quadratic functions:

1

2

3

4

5

γ2

ν0.92

0.94

0.96

0.98

1.00

0.0 0.1 0.2 0.3 0.4 0.5

Figure 3: Piecewise cubic functions: γ(3)(ν).

Now, we discuss the case where the space Vk−1 is defined by piecewise linear functions
(case m = 1 in (11)) and the space Ṽk will be defined by

Ṽk = V (2) = {w = (w1, w2, w3) | wi|T = ŵi ◦ F−1
T , ŵi ∈ P2(T̂ ),

ŵi(âj) = 0, i = 1, 2, 3, j = 1, 2, 3, 4, ∀T ∈ τk−1}

spanned by quadratic bump functions.
Further we consider a splitting of the finite element spaces over one triangulation (see

Figure 4). Let V be a finite element space associated with a triangulation τ of the domain Ω.
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t t

t

td

d

d

d

d

d

d • – the nodes in the vertices
◦ – the nodes in the middles of the edges
2 – the nodes in the barycenters of the faces
× – the node in the barycenter of the element

Figure 4: The splitting of the finite element space H (b).

Let also the space V = V1 ⊕ V2, where V1 and V2 are disjoint subspaces of V . Then we
denote the cosine of the abstract angle between the subspaces V1 and V2 by γ(V1, V2).

The space H = V (1) ⊕ V (2) is spanned by the piecewise linear functions corresponding
to the vertices of the elements added with the basis functions of V (2) corresponding to the
edge nodes. The graphic of the constant

γ̃(1,2) = γ(V (1),V(2))

is presented in Figure 5a).

1

4

γ2

ν0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

0.0 0.1 0.2 0.3 0.4 0.5

a)

1

4

γ2

ν0.81
0.83
0.85
0.87
0.89
0.91
0.93
0.95
0.97

0.0 0.1 0.2 0.3 0.4 0.5

b)

Figure 5: a) γ̃
(1,2)
T (ν), b) γ(b)(ν).

We introduce the finite element space V (b) spanned by the bulb functions

V(b) = span{xixjxk, x1x2x3x4 | i < j < k, i, j, k ∈ {1, 2, 3, 4} , x4 = 1 − x1 − x2 − x3}.
The space V (b) consists of the functions which vanishes on the edges of the element T ∈ τ .
Consider a two-level splitting H (b) = H ⊕ V (b) (see Figure 4) and the corresponding

γ(b) = γ(H,V (b)),

(see Figure 5b)). This case deserve special attention since γ(b)(ν) ≤
√

0.97, ∀ν ∈ (0, 1
2
).

At the end of this section we consider another splitting of the finite element space
H(b) = V (1) ⊕ (V (2) ⊕ V (b)) with corresponding γ̃(b) = γ(V (1),V(2) ⊕ V (b)), (see Figure 6).
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1

4

γ2

ν0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

0.0 0.1 0.2 0.3 0.4 0.5

Figure 6: The dependence of the constant γ̃(b) on the Poisson ratio.

5 Pentahedron meshes

Again, we assume that the hypotheses (H1) and (H2) are valid. To obtain an initial
triangulation τ0 of the domain Ω we perform the following steps:

(c) Decompose Ω by cubes;

(d) Decompose each cube from (c) into two pentahedra as it is shown in Figure 7a).

We construct a triangulation τ1 by dividing each pentahedron from τ0 into eight pentahedra
as it is done in Figure 7b). We generate any refined triangulation τk from τk−1 by the same
way. Then for the constant γ in (4) we have γ=γ(Ê), where Ê is the pentahedron with
the vertices

Ê = {(1, 0, 0), (0, 1, 0), (0, 0, 0), (1, 0, 1), (0, 1, 1), (0, 0, 1)}. (12)

a) b)

Figure 7: a) Dividing of a hexahedron into two pentahedra; b) A decomposition of a pentahedron

into eight subpentahedra.

First we consider the case, where the spaces Vk−1 and Ṽk are defined by the finite element
ansatz functions corresponding to the 6-node pentahedron, called the Pen 1 to Pen 1 case.
The corresponding constant in the C.B.S. inequality will be denoted by γ(pen,1). This
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constant is bounded by
√

0.95, see Figure 8. If the spaces Vk−1 and Ṽk are defined by the
ansatz functions corresponding to the 18-node pentahedron, i.e. in the Pen 2 to Pen 2
case, we get the behaviour of the constant γ(pen,2) illustrated in Figure 8. Additionally, we
consider the case where Vk−1 is defined by the ansatz functions of the 6-node pentahedron
and Ṽk is spanned by the nodal basis functions of the 18-node pentahedron in the midpoints
of the edges. The dependence of the corresponding constant γ(pen,1,2) is shown in Figure
8. Finally, we discuss the serendipity case (15-node pentahedron elements [9, p. 462]). By
analogy to the constants γ(pen,2) and γ(pen,1,2) we analyse constants γ(pen,2)

s and γ(pen,1,2)
s .

We obtain

0.97 < γ(1,2)
s < γ(1,2) < 1, ∀ν ∈

(
0,

1

2

)
.

2

3

1

γ2

ν0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.001.00

0.0 0.1 0.2 0.3 0.4 0.5

Figure 8: Pentahedron meshes: 1 - γ(pen,1)(ν), 2 - γ(pen,2)(ν), 3 - γ
(pen,2)
s (ν).

6 Hexahedron meshes

We suppose that the hypotheses (H1) and (H2) concerning the domain Ω hold. We obtain
an initial triangulation τ0 by dividing Ω into cubes. The triangulation τ1 is obtained from
τ0 by partitioning of each hexahedron into eight hexahedra as it is shown in Figure 9. An
arbitrary triangulation τk of the domain Ω is obtained from τk−1 by the same way.

Let the finite element spaces V
(m)
k−1 (V

(m)
k ) be spanned by functions which are continuous

and are polynomials of degree m in each direction xi, i = 1, 2, 3, on each element T ∈ τk−1

(T ∈ τk). Again, we consider the following three cases:

(a) Vk−1 = V
(1)
k−1 and Ṽk is spanned by the ansatz function from V

(1)
k which correspond

to the new nodes in τk.

(b) We use 27-node hexahedra, Vk−1 = V
(2)
k−1 and Ṽk is spanned by the ansatz functions

from V
(2)
k such that V

(2)
k = V

(2)
k−1 ⊕ Ṽk and V

(2)
k−1 ∩ Ṽk = {0}.

(c) Vk−1 = V
(1)
k−1 and Ṽk is spanned by the ansatz function from V

(2)
k which correspond

to the nodes in the midpoints of the edges, the centers of the faces, and the center
of the hexahedra T ∈ τk−1.

11



Figure 9: A partition of a hexahedron to eight elements.

The corresponding constants in the C.B.S. inequality are denoted by γ(hex,1), γ(hex,2), and
γ(hex,1,2), respectively. The dependence of these constants on the Poisson ratio ν is shown
in Figure 10.

2

3

1

γ2

ν0.83

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99
1.00

0.0 0.1 0.2 0.3 0.4 0.5

Figure 10: Hexahedron meshes, the octasection method: 1 – γ (hex,1), 2 – γ(hex,2), 3 – γ(hex,1,2).

Finally, we consider the bisection method for hexahedron meshes. Let T ∈ τ0 be an
arbitrary cube in the initial triangulation. We obtain a refined triangulation τ1 by dividing
of each cube T ∈ τ0 into two hexahedra T{i1}, i1 = 1, 2. In the first step the refinement
procedure is in x1-direction. Further we make a refinement in x2-direction dividing the
hexahedron T{i1} into two hexahedra T{i1, i2}, i1, i2 ∈ {1, 2}. In the third step we obtain
a triangulation τ3 refining the triangulation τ2 in x3-direction. Thus we obtain T{i1, i2, i3},
ij ∈ {1, 2}, j = 1, 2, 3. We repeat these three steps in the same order for obtaining the
triangulations τk, k ≥ 4. Then

γ = max
i=0,1,2

γb,i,

where

γb,0 = γ(T ), γb,1 = γ(T{i1}), γb,2 = γ(T{i1, i2}).

The dependence of these constants on the Poisson ratio is given in Figure 11.
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0.72
0.74
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Figure 11: Hexahedron meshes, the bisection method: 1−γ
(1)
b,0 , 2−γ

(1)
b,1 , 3−γ

(1)
b,2 , 4−γ

(2)
b,0 , 5−γ

(2)
b,1 ,

6− γ
(2)
b,2 .

7 Discussion

In this section we make a comparison of the results obtained by different discretizations.
We present upper and lower bounds for the constant γ(ν), γ ≤ γ(ν) ≤ γ, ν ∈

(
0, 1

2

)
in

Table 1.
We have not a rigorous proof but the experiments show us that γ = γ

(
T̂{6}

)
for the

tetrahedron meshes considered in Section 4. We obtain the best result for the regular
pyramid. The tetrahedron K has the following properties

∇ϕi(x) ‖ bi, i = 1, 2, 3, 4,

where ϕi(x) is an arbitrary linear nodal basis function associated with the vertex node bi

and bi is the radius vector of the node bi.
This properties reflect on the γ constant as follows: γ(1)(K) is independent of ν if

ν ∈
(
0, 1

3

]
and grows linearly when 1

3
< ν < 1

2
. The latter denotes that γ(1)(K) is

independent of ν when the coefficient of
∫

Ω
div(u)div(v) dx

is smaller than the coefficient of

3∑

i,j=1

∫

Ω
εij(u)εij(v) dx

in the representation of the bilinear form (3).
The serendipity pentahedra give worse results than 18-node pentahedron elements for

Pen 2 to Pen 2 case. But the latter is not true for Pen 1 to Pen 2 case.
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Mesh type γ γ γ

tetrahedra γ(1) 0.8940742701185053 0.9
tetrahedra γ(1,2) 0.9843653209940322 1
tetrahedra γ(2) 0.9814419781277343 1
tetrahedra γ(3) 0.9903363929671173 1
tetrahedra γ̃(1,2) 0.9466905004377048 1
tetrahedra γ(b) 0.9084540555884962 0.97
tetrahedra γ̃(b) 0.9554792931954466 1

pentahedra γ(pen,1) 0.8714946277928661 0.95454
pentahedra γ(pen,1,2) 0.977358542005979 1
pentahedra γ(pen,1,2)

s 0.9739370808771585 1
pentahedra γ(pen,2) 0.9532267833061236 1
pentahedra γ(pen,2)

s 0.98026581438292 1

hexahedra γ(hex,1) 0.8324675324675327 0.973
hexahedra γ(hex,1,2) 0.9519177881326361 1
hexahedra γ(hex,2) 0.9327994977034302 1

hexahedra γ
(1)
b,2 0.940559585231717 1

hexahedra γ
(2)
b,2 0.9683415044643198 1

Table 1: Upper and lower bounds for the constant γ(ν), ν ∈
(
0, 1

2

)
with respect to different

triangulations.
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